"-_.-r.'
TN I—

HIGH-QUALITY AND REAL- DERING
WITH DXR AND OTHER APIS

-
.
.

\ -
S : ¥
- M
N N -
) -, - e
" o Bl ——"-'4 4 -
'—_d ‘l ‘-— L.i'
. ek e —

ERIC HAINES .
TOMAS AKENINE-MOLLER . /

SECTION EDITORS -
ALEXANDER KELLER PETER SHIRLEY -
M ‘GAN-MCQ%E_ INGO WALD Ap{
JACOB MUNKBERG =~ ~CHRISWYMAN
. MATT PHARR <AnviblA. Spen

~ \“‘_.__ & r o ;——",’ . k‘

This PDF of the book "Ray Tracing Gems" is an unofficial
updated version, released under the original book’s
Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0] license. It folds in errata corrections. It is
not created or maintained by Apress. See raytracinggems.com.

Ray Tracing Gems

High-Quality and Real-Time Rendering
with DXR and Other APIs

Edited by Eric Haines and Tomas Akenine-Moller

Section Editors Unofficial, errata corrected
Alexander Keller version 1.9, 2021-05-18
Morgan McGuire

Jacob Munkberg

Matt Pharr

Peter Shirley

Ingo Wald

Chris Wyman

ApPress

NVIDIA opéen

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://raytracinggems.com

Ray Tracing Gems: High-Quality and Real-Time Rendering

with DXR and Other APIs

Edited by Jacob Munkberg
Eric Haines Matt Pharr
Tomas Akenine-Méaller Peter Shirley
Section Editors: Ingo Wald
Alexander Keller Chris Wyman

Morgan McGuire

ISBN-13 (pbk]: 978-1-4842-4426-5 ISBN-13 (electronic): 978-1-4842-4427-2
https://doi.org/10.1007/978-1-4842-4427-2

Library of Congress Control Number: 2019934207
Copyright © 2019 by NVIDIA

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in
this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

@@@@ Open Access This book is licensed under the terms of the Creative Commons

swrrmm Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.
org/licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this book or parts of it.

The images or other third party material in this book are included in the book's Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner] is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses
are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at
www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on
GitHub via the book's product page, located at www.apress.com/9781484244265. For more detailed information,
please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4427-2

Table of Contents

[(=1 - o Xiii
FOrewordccoeceiiiimmmeiiiinneeis s s s nms s s rnma s s rnma s e nmmn s e nnnns XV
CoNtribUtOrs ... ————— xXi
1 T 1 xliii
PART I: Ray Tracing BasSiCSccccirrmmmssmmmmmssimmnnsssmmsesssnmsmssssmsmssssnnnsssnes 5
Chapter 1: Ray Tracing Terminologycccccuurmmmmssisrmmmmsssssmmmmssssssmnnsssssssnnnssans 7
1.1 HISTOrICal NOTES oot 7
(I 1= T) 4o 1= RSSO 8
Chapter 2: What is @ Ray?....ccciiieiiiiiiieessiscssrssssssnessssssss s s s s mm s smmssenns 15
2.1 Mathematical Description of @ Ray.....ccooeiiiiiiiiiiiie e 15
2.2 Ray INtervals. ..o 17
2.3 RAYS IN DXR oo 18
2.4 CONCLUSION . ceeiiiie ettt e e e e e e s e eeeaaeeeeaannes 19
Chapter 3: Introduction to DirectX Raytracingccccccvvimmmmnsisimnnenssssnnnnnnns 21
ST INErOAUCTION e 21
3.2 DVEIVIEBW ..ottt ettt e e e e e ettt e e e e e e e e e e e aaeaeeeaannns 21
3.3 Getting Started . ..o 22
3.4 The DirectX Raytracing Pipeline ... 23
3.5 New HLSL Support for DirectX Raytracing........cccoocveveiiiiiiiniiiiiieees 25
3.6 A Simple HLSL Ray Tracing Example ... 28
3.7 Overview of Host Initialization for DirectX Raytracing.......cccccccceeeeennes 30

3.8 Basic DXR Initialization and Setup.......ccccveiiiiiiiieiiiieeee e 31

TABLE OF CONTENTS

3.9 Ray Tracing Pipeline State Objects ... 37
3.10 Shader Tables. ... 41
3.171 Dispatching Rays ... 43
3.12 Digging Deeper and Additional ReSOUrcescccvevieiiiiiieeniiiiieeens L
TR B N 0o o LU =] o o 1SS PPSPRERRR 45

Chapter 4: A Planetarium Dome Master Camera.........ccccovmeiimeirennrenncnnnns 49
L/ 1 oY o Yo [0 Tt 4o o U UPPRERR 49
4.2 MEENOAS ... e a e 50
4.3 Planetarium Dome Master Projection Sample Codeccceeeveeeeennnnes o8

Chapter 5: Computing Minima and Maxima of Subarraysc.ccccvveenunnee 61
0.1 MOBIVAION 1 61
5.2 Naive Full Table LOOKUPueiiieiiieiieeee e 62
9.3 The Sparse Table Method........cooiiiiiiiee e 62
5.4 The (Recursive) Range Tree Method..........cccoooveiiiiciiicececcee e, b4
5.5 Iterative Range Tree QUETIEScuviiiiiii i 66
0.6 RESULES <. 69
ST A TV T 010 0 F=1 oy V2SO UPERRT 69

PART Il: Intersections and Efficiencycccccoumeciiimmeiininesinnneesnnnnnanns 75

Chapter 6: A Fast and Robust Method for Avoiding Self-Intersection 77
6.1 INTFOAUCTION Lo e e e e 77
6.2 MEROG. .. e 78
6.3 CONCLUSION ettt ettt e e e et e e e e e e e e e eeeaaeeeeaannes 84

Chapter 7: Precision Improvements for Ray/Sphere Intersection 87
7.1 Basic Ray/Sphere INtersectioncccccoecviieeiiiieie e 87
7.2 Floating-Point Precision Considerations.........cccccoveeeeiiiiiiiiiiiiieeee s 89
7.3 Related RESOUICESuuviiiiiiie e 93

TABLE OF CONTENTS

Chapter 8: Cool Patches: A Geometric Approach to

Ray/Bilinear Patch Intersections.......cccccceeercccccmmeemrnnnessssscsssssseees e e esssses 95
8.1 Introduction and Prior Art.......ooo e 95
8.2 GARP Details wuveiiiiiee ittt 100
8.3 Discussion of RESULES.......ueiiiiiiiiiii e 102
TR/ 0o Yo =TSRSS 105

Chapter 9: Multi-Hit Ray Tracing in DXRcccciiimiiiimesiniseisnsessesssnnenns 111
Q.1 INEFOAUCTION et e e e e e e e e e 111
9.2 IMplementation ... 113
9.3 RESULES <o 119
04 CONCLUSIONS ettt e e et e e e e e e e e eeeaaeeeeanes 124

Chapter 10: A Simple Load-Balancing Scheme with

High Scaling EffiCiencyccccciiimmiiimiiine s s snsssssnssas 127
10T INErOAUCTION e a e 127
10.2 REQUITEMENES ..eiiiiiiiiie et 128
10.3 Load BalanCiNg. . e 128
104 RESULES et 132

PART lll: Reflections, Refractions, and Shadows.......cc..cceveenrennnee. 137

Chapter 11: Automatic Handling of Materials in Nested Volumes.......... 139
11.1 Modeling Volumes ... 139
L 7 S Lo T 4 T o OSSP 142
(I RC T I 0 1 €= 4 [1= SRS 146

Chapter 12: A Microfacet-Based Shadowing Function to

Solve the Bump Terminator Problem........coiiiiiiiciiiirrrcreecrcreaas 149
127 INTrOAUCTION weeiieii e e e e 149
12.2 Previous WOTKoooiiiieeee et 150
T2.3 MEENOT. .. e 151
12.4 RESULES e 157

TABLE OF CONTENTS

Chapter 13: Ray Traced Shadows: Maintaining Real-Time

Frame Ratesccimmmeeemmiiiiiiiiinns s s s ssssss s 159
L 200 I 1Y (o T [Tt (o o PP 159
13.2 RELAted WOTK . .oeiiiee e 161
13.3 Ray Traced Shadowsccooviiiiiiiiiiiiieeee e 162
13.4 Adaptive SampPling oo 164
13.5 IMplementation ... e 171
13.6 RESULES .o 175
13.7 Conclusion and Future Work ... 179

Chapter 14: Ray-Guided Volumetric Water Caustics in

Single Scattering Media with DXR.........ccoimmeiiiimmmmnnirircss s 183
L7300 1Y oo [Tt (o o PP 183
14.2 Volumetric Lighting and Refracted Light........ccoooiiiiii 186
T4.3 ALGOTIERM L e 189
14.4 Implementation Details......ooi i 197
TA.5 RESULES e 198
T4.6 FUTUFE WOTK. ..o 200
L0 A =Y o o TSP 200

PART IV: Sampling c..ccceiiimeiiiiiiiseiisesssess s s smss s ssssssssssssasssnnssns 205

Chapter 15: On the Importance of Samplingcccciimciiieeciiinsirieeceneean, 207
191 INtrodUCtion oo 207
15.2 Example: Ambient Occlusion ..., 208
15.3 Understanding VarianCe.......ooue oo 213
15.4 Direct ILlumination ... 216
10,5 CONCLUSION .ttt e e e e 221

Chapter 16: Sampling Transformations Zoocccoeiiieiieiirciieescnannnes 223
16.1 The Mechanics of Sampling.......ooooiiiiiiiie e 223
16.2 Introduction to Distributions........ccccuvviiiiieeiiiie e, 224

\

TABLE OF CONTENTS

16.3 One-Dimensional Distributionseeevvieeiiiiiiiiiieeeee e, 226
16.4 Two-Dimensional Distributionseeeviiiiiiiiiieeeeeeeeen 230
16.5 Uniformly Sampling Surfaces ... 234
16.6 Sampling DIireCtioNS....cccviiiiiiieieec e 239
16.7 Volume SCattering ..o 243
16.8 Adding to the Zoo Collection........ccuuiieiiiiiiiii e, 244
Chapter 17: Ignoring the Inconvenient When Tracing Rays........ccc.ccve.... 247
177 INErodUCtion oo 247
17.2 MOTIVAION <. e e 247
LRC I &1 =T 2 0T 1o Vo USRI 250
17.4 Path Regularization...........ccvioiiiiiie e 251
L8 T O T of LU £=1 o o PP 252
Chapter 18: Importance Sampling of Many Lights on the GPU............... 255
181 INTrOAUCTION e 255
18.2 Review of Previous Algorithms ..o 257
18.3 FOUNAATIONS .. 259
LR T/ A Lo Lo 4 T o o RSP 265
T8.5 RESULES e 271
18.6 CONCLUSION ...ttt e e e e e 280
PART V: Denoising and Filteringccccoiieiiimiiicinnssnnssssnnassnnasnns 287
Chapter 19: Cinematic Rendering in UE4 with Real-Time
Ray Tracing and DenoiSiNg.........ccueeesiirmmmmmsismmmmesssssmmnmsssssssnnsssssssnnnsssnsnns 289
L0 1Y (e Yo [Tt (o o SRR 289
19.2 Integrating Ray Tracing in Unreal Engine 4.......cccccccooiiiiiii. 290
19.3 Real-Time Ray Tracing and Denoisingccceeeviiieniiieiiiicc e 300
194 CONCLUSIONS ...t e e e 317

Vil

TABLE OF CONTENTS

Chapter 20: Texture Level of Detail Strategies for

Real-Time Ray TracCingcccieeirmeiimeiirmsirmssnesssmsssnssssmsssmsssnnsssmsssnnssnnssnns 321
20,7 INErodUCHION (oo 321
20.2 BaCKGroUNDooiiiiiieiiic e 323
20.3 Texture Level of Detail Algorithms ..o, 324
20.4 Implementation ... 336
20.5 Comparison and ReSULES........cuuiiiiiiii e 338
20.6 COT. ittt a e aee e 342

Chapter 21: Simple Environment Map Filtering Using

Ray Cones and Ray Differentials........ccccoumiiimmiiimciimsccssisecsrs s seessenecans 347
217 INErOdUCHION 1o 347
21.2 RAY CONES . i 348
21.3 Ray Differentials....c..ueeeiiiieee e 349
21,4 RESULLS .ot e e 349

Chapter 22: Improving Temporal Antialiasing with

Adaptive Ray TraCing ...c.cciveeiiimmsinmmmssimnmssrsssssssssssssssssssssssssssssnassssnnssssnns 353
227 INErOdUCHION (oo 353
22.2 Previous Temporal AntialiaSingceooeeeiiiiiiiiiiiiiiee e 355
22.3 ANeW ALGOrithm .. 356
22.4 EQrly RESULES ..eeiiiieiic e 363
22.5 LIMITAtIONS oo 366
22.6 The Future of Real-Time Ray Traced Antialiasing.......cccccccceveeerennnes 367
22.7 CONCLUSION ..ciiiieis ittt et e e e e e e e e e e e e e e e e annes 368

PART VI: Hybrid Approaches and Systems.........cccccvinmmmmsininnasinennes 375

Chapter 23: Interactive Light Map and Irradiance Volume

Preview in Frostbite...........cmmmmmmmiii s 377
23. 7 INErodUCHION (oo 377
23.2 Gl SOWVET PIPELINE .ttt 378
23.3 Acceleration TeChNIQUEScoo i 393

Vil

TABLE OF CONTENTS

23.4 LIVE UPate.. i 398
23.5 Performance and Hardware..........cccceeiiiiiiiiiiiiiee e 400
23.6 CONCLUSION ..ciiiiei ettt e e e e e e e annes 405
Chapter 24: Real-Time Global ILlLumination with Photon Mapping.......... 409
24.7 INErOdUCHION (oo 409
24.2 Photon TraCing cooooeeeeeeeeeeee ettt e e e e 411
24.3 Screen-Space Irradiance Estimation........ccocoiiiiiiiis 418
24,4 FIEEIING 1ot 425
24,3 RESULLS .t 430
24.6 FUTUIE WOTK. ..ot a e 434
Chapter 25: Hybrid Rendering for Real-Time Ray Tracing.........cccccevee... 437
25.1 Hybrid Rendering Pipeline OVErviewccccceiiiiiieiiiiiiie e 437
25.2 Pipeline BreakdOWn ..o 439
25.3 PerformanCe ..o 468
25.4 FULUTE .ot a e e 469
45 TR T 0o o [S UURSRRRER 469
Chapter 26: Deferred Hybrid Path Tracing.........cccovvmmmmmiiiiiinncnccnneenn, 475
26.7 DVEIVIBW .iiiiee ettt ettt e e e e e e ettt e e e e e e e e e e e aaaaeeeaannes 475
26.2 Hybrid APProach. ... e 476
26.3 BVH Traversal. ... 478
26.4 Diffuse Light Transport ... 481
26.5 Specular Light Transport ... 485
P4 eI =Y =] o I= = o 2SRRI 487
26.7 PerformanCe ..o 488
Chapter 27: Interactive Ray Tracing Techniques for
High-Fidelity Scientific Visualization.......cccoveiireciiecii e e 493
2771 INErodUCHION (oo 493
27.2 Challenges Associated with Ray Tracing Large Scenes................... 494

TABLE OF CONTENTS

27.3 Visualization Methodsccooiiiiiiiiiiece e 500
27.4 Closing ThOUGNES ...eeeiiiiiiie e 012
PART VII: Global ILlumination........cccoimeiimeiinesiressrsss s rnasans 519
Chapter 28: Ray Tracing Inhomogeneous Volumes........ccccevrmmnirrnnnsnnnnnns 521
28.1 Light Transport in Volumes........ccooiiiiiiiiiiic e 521
28.2 Wo0dCOCK TraCKiNgeeeeeieeeiiiiiiieeee et 922
28.3 Example: A Simple Volume Path Tracer.......cccccoeiiiiiiiiis 924
28.4 Further Readingouiiiiiiiieeiie e 530
Chapter 29: Efficient Particle Volume Splatting in a Ray Tracer 533
29. 1 MOTIVATION ..t a e 933
29.2 ALGOTIENM Lo 534
29.3 ImMplementationoiio e 535
29 .4 RESULLS .t 039
29,0 SUMMIATY Lottt e e ettt e e e e e e e e ettt e e e e e e e e e s nnnrneeeeaaaeeaaannes 539
Chapter 30: Caustics Using Screen-Space Photon Mapping................... 543
30,71 INErOAUCTION weeeiiiee e 543
30.2 OVEIVIBW ..ttt e e e e e et e e e e e e e e e eeeaeeeas S44
30.3 Implementation ... 545
30,4 RESULES i 552
K 8 T 0o Yo [SRS 553
Chapter 31: Variance Reduction via Footprint Estimation in
the Presence of Path Reuse..........coveeiiiimmmeiiiiime e 557
31T INtrOdUCTION 1 557
31.2 Why Assuming Full Reuse Causes a Broken MIS Weight 959
31.3 The Effective Reuse Factor ..o 560
31.4 Implementation IMpacts......cooiiii e 965
315 RESULES s 566

TABLE OF CONTENTS

Chapter 32: Accurate Real-Time Specular Reflections with

[Lo TT=T 4 Lo =30 0= T 3 11 TR 571
321 INTrOAUCTION ceeeiiiee e 571
32.2 Previous WOTKcooiieeee et 573
R4 Y Uo o 14 T o PSP 975
32.4 Spatiotemporal FIltering.......oooiiiiiiee e 587
32.5 RESULES e 598
R /TN 0 oo LU =] o o 1SR 604
32.7 FUTUFE WOTK. ..o 605

XI

Preface

Ray tracing has finally become a core component of real-time rendering. We

now have consumer GPUs and APIs that accelerate ray tracing, but we also need
algorithms with a focus on making it all run at 60 frames per second or more, while
providing high-quality images for each frame. These methods are what this book is
about.

Prefaces are easy to skip, but we want to make sure you to know two things:

> Supplementary code and other materials related to this book can be found
linked at http://raytracinggems.com.

> All the content in this book is open access.

The second sounds unexciting, but it means you can freely copy and redistribute
any chapter, or the whole book, as long as you give appropriate credit and

you are not using it for commercial purposes. The specific license is Creative
Commons Attribution 4.0 International License (CC-BY-NC-NDJ, https://
creativecommons.org/licenses/by-nc-nd/4.0/. We put this into place so that
authors, and everyone else, could disseminate the information in this volume as
quickly as possible.

Thanks are in order, and the support from everyone involved has been one of the
great pleasures of working on this project. When we approached Aaron Lefohn,
David Luebke, Steven Parker, and Bill Dally at NVIDIA with the idea of making a
Gems-style book on ray tracing, they immediately thought that it was a great idea
to put into reality. We thank them for helping make this happen.

We are grateful to Anthony Cascio and Nadeem Mohammad for help with the
website and submissions system, and extra thanks to Nadeem for his contract
negotiations, getting the book to be open access and free in electronic-book form.

The time schedule for this book has been extremely tight, and without the
dedication of NVIDIA's creative team and the Apress publisher production team,
the publication of this book would have been much delayed. Many on the NVIDIA
creative team generated the Project Sol imagery that graces the cover and the
beginnings of the seven parts. We want to particularly thank Amanda Lam, Rory
Loeb, and T.J. Morales for making all figures in the book have a consistent style,

X1l

http://raytracinggems.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

PREFACE

XIv

along with providing the book cover design and part introduction layouts. We also
want to thank Dawn Bardon, Nicole Diep, Doug MacMillan, and Will Ramey at
NVIDIA for their administrative support.

Natalie Pao and the production team at Apress have our undying gratitude. They
have labored tirelessly with us to meet our submission deadline, along with
working through innumerable issues along the way.

In addition, we want to thank the following people for putting in extra effort to help
make the book that much better: Pontus Andersson, Andrew Draudt, Aaron Knoll,
Brandon Lloyd, and Adam Marrs.

Major credit goes out to our dream team of section editors, Alexander Keller,
Morgan McGuire, Jacob Munkberg, Matt Pharr, Peter Shirley, Ingo Wald, and Chris
Wyman, for their careful reviewing and editing, and for finding external reviewers
when needed.

Finally, there would be no book without the chapter authors, who have generously
shared their experiences and knowledge with the graphics community. They have
worked hard to improve their chapters in many different ways, often within hours
or minutes of us asking for just one more revision, clarification, or figure. Thanks to
you all!

—Eric Haines and Tomas Akenine-Moller
January 2019

Foreword
by Turner Whitted and Martin Stich

Simplicity, parallelism, and accessibility. These are themes that come to mind with
ray tracing. | never thought that ray tracing would provide the ultimate vehicle for
global illumination, but its simplicity continues to make it appealing. Few graphics
rendering algorithms are as easy to visualize, explain, or code. This simplicity
allows a novice programmer to easily render a couple of transparent spheres

and a checkerboard illuminated by point light sources. In modern practice the
implementation of path tracing and other departures from the original algorithm
are a bit more complicated, but they continue to intersect simple straight lines with
whatever lies along their paths.

The term “embarrassingly parallel” was applied to ray tracing long before there
was any reasonable parallel engine on which to run it. Today ray tracing has met its
match in the astonishing parallelism and raw compute power of modern GPUs.

Accessibility has always been an issue for all programmers. Decades ago if a
computer did not do what | wanted it to do, | would walk around behind it and

make minor changes to the circuitry. (I am not joking.) In later years it became
unthinkable to even peer underneath the layers of a graphics APl to add
customization. That changed subtly a couple of decades ago with the gradual
expansion of programmable shading. The flexibility of today’s GPUs along with
supporting programming tools provide unprecedented access to the full computing
potential of parallel processing elements.

So how did this all lead to real-time ray tracing? Obviously the challenges of
performance, complexity, and accuracy have not deterred graphics programmers
as they simultaneously advanced quality and speed. Graphics processors have
evolved as well, so that ray tracing is no longer a square peg in a round hole. The
introduction of explicit ray tracing acceleration features into graphics hardware is
a major step toward bringing real-time ray tracing into common usage. Combining
the simplicity and inherent parallelism of ray tracing with the accessibility and
horsepower of modern GPUs brings real-time ray tracing performance within the
reach of every graphics programmer. However, getting a driver’s license isn’t the
same as winning an automobile race. There are techniques to be learned. There is
experience to be shared. As with any discipline, there are tricks of the trade.

XV

FOREWORD

XVI

When those tricks and techniques are shared by the experts who have contributed
to this text, they truly become gems.

—Turner Whitted
December 2018

k ok sk

Itis an amazing time to be in graphics! We have entered the era of real-time ray
tracing—an era that everyone knew would arrive eventually, but until recently
was considered years, maybe decades, away. The last time our field underwent
a “big bang” event like this was in 2001, when the first hardware and API support
for programmable shading opened up a world of new possibilities for developers.
Programmable shading catalyzed the invention of a great number of rendering
techniques, many of which are covered in books much like this one (e.g., Real-
Time Rendering and GPU Gems, to name a few). The increasing ingenuity behind
these techniques, combined with the growing horsepower and versatility of
GPUs, has been the main driver of real-time graphics advances over the past few
years. Games and other graphics applications look beautiful today thanks to this
evolution.

And yet, while progress continues to be made to this day, to a degree we have
reached a limit on what is possible with rasterization-based approaches. In
particular, when it comes to simulating the behavior of light (the essence of
realistic rendering), the improvements have reached a point of diminishing returns.
The reason is that any form of light transport simulation fundamentally requires
an operation that rasterization cannot provide: the ability to ask “what is around
me?” from any given point in the scene. Because this is so essential, most of the
important rasterization techniques invented over the past decades are at their
cores actually clever workarounds for just that limitation. The approach that they
typically take is to pre-generate some data structure containing approximate scene
information and then to perform lookups into that structure during shading.

Shadow maps, baked light maps, screen-space buffers for reflections and ambient
occlusion, light probes, and voxel grids are all examples of such workarounds.

The problem that they have in common is the limited fidelity of the helper data
structures on which they rely. The structures necessarily contain only simplified
representations, as precomputing and storing them at the quantity and resolutions
required for accurate results is infeasible in all but the most trivial scenarios. As a
result, the techniques based on these data structures all have unavoidable failure
cases that lead to obvious rendering artifacts or missing effects altogether. This

FOREWORD

is why contact shadows do not look quite right, objects behind the camera are
missing in reflections, indirect lighting detail is too crude, and so on. Furthermore,
manual parameter tuning is usually needed for these techniques to produce their
best results.

Enter ray tracing. Ray tracing is able to solve these cases, elegantly and accurately,
because it provides precisely the basic operation that rasterization techniques
try to emulate: allowing us to issue a query, from anywhere in the scene, into any
direction we like and find out which object was hit where and at what distance.

It can do this by examining actual scene geometry, without being limited to
approximations. As a result, computations based on ray tracing are exact enough
to simulate all kinds of light transport at a very fine level of detail. There is no
substitute for this capability when the goal is photorealism, where we need to
determine the complicated paths along which photons travel through the virtual
world. Ray tracing is a fundamental ingredient of realistic rendering, which is why
its introduction to the real-time domain was such a significant step for computer
graphics.

Using ray tracing to generate images is not a new idea, of course. The origins date
back to the 1960s, and applications such as film rendering and design visualization
have been relying on it for decades to produce lifelike results. What is new, however,
is the speed at which rays can be processed on modern systems. Thanks to
dedicated ray tracing silicon, throughput on the recently introduced NVIDIA Turing
GPUs is measured in billions of rays per second, an order of magnitude
improvement over the previous generation. The hardware that enables this level of
performance is called RT Core, a sophisticated unit that took years to research and
develop. RT Cores are tightly coupled with the streaming multiprocessors

(SMs) on the GPU and implement the critical “inner loop” of a ray trace operation:
the traversal of bounding volume hierarchies (BVHs) and intersection testing of rays
against triangles. Performing these computations in specialized circuits not only
executes them much faster than a software implementation could, but also frees up
the generic SM cores to do other work, such as shading, while rays are processed in
parallel. The massive leap in performance achieved through RT Cores laid the
foundation for ray tracing to become feasible in demanding real-time applications.

Enabling applications—games in particular—to effectively utilize RT Cores also
required the creation of new APIls that integrate seamlessly into established
ecosystems. In close collaboration with Microsoft, DirectX Raytracing (DXR)
was developed and turned into an integral part of DirectX 12. Chapter 3 provides
an introduction. The NV_ray_tracing extension to Vulkan exposes equivalent
concepts in the Khronos API.

XVl

FOREWORD

XVl

The key design decisions that went into these interfaces were driven by the desire
to keep the overall abstraction level low [staying true to the direction of DirectX 12
and Vulkan), while at the same time allowing for future hardware developments
and different vendor implementations. On the host API side, this meant putting

the application in control of aspects such as resource allocations and transfers,
shader compilation, BVH construction, and various forms of synchronization.

Ray generation and BVH construction, which execute on the GPU timeline, are
invoked using command lists to enable multithreaded dispatching and seamless
interleaving of ray tracing work with raster and compute. The concept of shader
tables was specifically developed to provide a lightweight way of associating scene
geometry with shaders and resources, avoiding the need for additional driver-
side data structures that track scene graphs. To GPU device code, ray tracing is
exposed through several new shader stages. These stages provide programmable
hooks at natural points during ray processing—when an intersection between a
ray and the scene occurs, for example. The control flow of a ray tracing dispatch
therefore alternates between programmable stages and fixed-function (potentially
hardware-accelerated) operations such as BVH traversal or shader scheduling.
This is analogous to a traditional graphics pipeline, where programmable shader
execution is interleaved with fixed-function stages like the rasterizer (which itself
can be viewed as a scheduler for fragment shaders). With this model, GPU vendors
have the ability to evolve the fixed-function hardware architecture without breaking
existing APls.

Fast ray tracing GPUs and APIls are now widely available and have added a
powerful new tool to the graphics programmer’s toolbox. However, by no means
does this imply that real-time graphics is a solved problem. The unforgiving frame
rate requirements of real-time applications translate to ray budgets that are far
too small to naively solve full light transport simulations with brute force. Not
unlike the advances of rasterization tricks over many years, we will see an ongoing
development of clever ray tracing techniques that will narrow the gap between
real-time performance and offline-rendered “final pixel” quality. Some of these
techniques will build on the vast experience and research in the field of non-real-
time production rendering. Others will be unique to the demands of real-time
applications such as game engines. Two great case studies along those lines,
where graphics engineers from Epic, SEED, and NVIDIA have pushed the envelope
in some of the first DXR-based demos, can be found in Chapters 19 and 25.

As someone fortunate enough to have played a role in the creation of NVIDIA's ray
tracing technology, finally rolling it out in 2018 has been an extremely rewarding
experience. Within a few months, real-time ray tracing went from being a research
niche to a consumer product, complete with vendor-independent API support,

FOREWORD

dedicated hardware in mainstream GPUs, and—with EA’s Battlefield V —the first
AAA game title to ship accelerated ray traced effects. The speed at which ray
tracing is being adopted by game engine providers and the level of enthusiasm
that we are seeing from developers are beyond all expectations. There is clearly
a strong desire to take real-time image quality to a level possible only with ray
tracing, which in turn inspires us at NVIDIA to keep pushing forward with the
technology. Indeed, graphics is still at the beginning of the ray tracing era: The
coming decade will see even more powerful GPUs, advances in algorithms, the
incorporation of artificial intelligence into many more aspects of rendering, and
game engines and content authored for ray tracing from the ground up. There is a
lot to be done before graphics is “good enough,” and one of the tools that will help
reach the next milestones is this book.

Eric Haines and Tomas Akenine-Maller are graphics veterans whose work has
educated and inspired developers and researchers for decades. With this book,
they focus on the area of ray tracing at just the right time as the technology gathers
unprecedented momentum. Some of the top experts in the field from all over the
industry have shared their knowledge and experience in this volume, creating an
invaluable resource for the community that will have a lasting impact on the future
of graphics.

—Martin Stich
DXR & RTX Raytracing Software Lead, NVIDIA
December 2018

XIX

Contributors

Maksim Aizenshtein is a senior system software engineer at
NVIDIA in Helsinki. His current work and research focuses
on real-time ray tracing and modern rendering engine
design. His previous position was 3DMark team lead at UL
Benchmarks. Under his lead, the 3DMark team implemented
ray tracing support with the DirectX Raytracing API, as

well as devised new rendering techniques for real-time ray
tracing. He also led the development and/or contributed to
various benchmarks released by UL Benchmarks. Before
UL Benchmarks, at Biosense-Webster, he was responsible
for GPU-based rendering in new medical imaging systems. Maksim received his BSc in
computer science from Israel’s Institute of Technology in 2011.

Tomas Akenine-Maller is a distinguished research scientist
at NVIDIA, Sweden, since 2016, and currently on leave from
his position as professor in computer graphics at Lund
University. Tomas coauthored Real-Time Rendering and
Immersive Linear Algebra and has written 100+ research
papers. Previously, he worked at Ericsson Research and Intel.

Johan Andersson is the CTO at Embark, working on exploring
the creative potential of new technologies. For the past

18 years he has been working with rendering, performance,
and core engine systems at SEED, DICE, and Electronic Arts
and was one of the architects on the Frosthite game engine.
Johan is a member of multiple industry and hardware advisory
boards and has frequently presented at GDC, SIGGRAPH, and
other conferences on topics such as rendering, performance,
game engine design, and GPU architecture.

XXi

CONTRIBUTORS

XXII

Magnus Andersson joined NVIDIA in 2016 and is a senior
software developer, mainly focusing on ray tracing. He
received an MS in computer science and engineering and

a PhD in computer graphics from Lund University in 2008
and 2015, respectively. Magnus’s PhD studies were funded
by the Intel Corporation, and his research interests include
stochastic rasterization techniques and occlusion culling.

Dietger van Antwerpen is a senior graphics software
engineer at NVIDIA in Berlin. He wrote his graduate thesis
on the topic of physically based rendering on the GPU and
continues working on professional GPU renderers at NVIDIA
since 2012. He is an expert in physically based light transport
simulation and parallel computing. Dietger has contributed
to the NVIDIA Iray light transport simulation and rendering
system and the NVIDIA OptiX ray tracing engine.

Diede Apers is a rendering engineer at Frostbite in
Stockholm. He graduated in 2016 from Breda University of
Applied Sciences with a master’s degree in game technology.
Prior to that he did an internship at Larian Studios while
studying digital arts and entertainment at Howest University
of Applied Sciences.

Colin Barré-Brisebois is a senior rendering engineer at
SEED, a cross-disciplinary team working on cutting-edge
future technologies and creative experiences at Electronic
Arts. Prior to SEED, he was a technical director/principal
rendering engineer on the Batman Arkham franchise at
WB Games Montreal, where he led the rendering team
and graphics technology initiatives. Before WB, he was a
rendering engineer on several games at Electronic Arts,
including Battlefield 3, Need For Speed, Army of TWO, Medal
of Honor, and others. He has also presented at several
conferences (GDC, SIGGRAPH, HPG, 13D) and has publications
in books (GPU Pro series), the ACM, and on his blog.

CONTRIBUTORS

Jasper Bekkers is a rendering engineer at SEED, a
cross-disciplinary team working on cutting-edge future
technologies and creative experiences at Electronic Arts.
Prior to SEED, he was a rendering engineer at 0TOY,
developing cutting-edge rendering techniques for the Brigade
and Octane path tracers. Before OTOY he was a rendering
engineer at Frostbite in Stockholm, working on Mirror’s Edge,
FIFA, Dragon Age, and Battlefield titles.

Stephan Bergmann is a rendering engineer at Enscape in
Karlsruhe, Germany. He is also a PhD candidate in computer
science from the computer graphics group at the Karlsruhe
Institute of Technology (KIT), where he worked before joining
Enscape in 2018. His research included sensor-realistic
image synthesis for industrial applications and image-based
rendering. It was also at the KIT where he graduated in
computer science in 2006. He has worked as a software and
visual computing engineer since 2000 in different positions in
the consumer electronics and automotive industries.

Nikolaus Binder is a senior research scientist at

NVIDIA. Before joining NVIDIA he received his MS degree

in computer science from the University of Ulm, Germany,
and worked for Mental Images as a research consultant. His
research, publications, and presentations are focused on
quasi-Monte Carlo methods, photorealistic image synthesis,
ray tracing, and rendering algorithms with a strong emphasis
on the underlying mathematical and algorithmic structure.

XX

CONTRIBUTORS

XXiv

Jiri Bittner is an associate professor at the Department of
Computer Graphics and Interaction of the Czech Technical
University in Prague. He received his PhD in 2003 from the
same institution. For several years he worked as a researcher
at Technische Universitat Wien. His research interests
include visibility computations, real-time rendering, spatial
data structures, and global illumination. He participated in a
number of national and international research projects and
several commercial projects dealing with real-time rendering
of complex scenes.

Jakub Boksansky is a research scientist at the Department
of Computer Graphics and Interaction of Czech Technical
University in Prague, where he completed his MS in computer
science in 2013. Jakub found his interest in computer
graphics while developing web-based computer games using
Flash and later developed and published several image effect
packages for the Unity game engine. His research interests
include ray tracing and advanced real-time rendering
techniques, such as efficient shadows evaluation and image-
space effects.

Juan Canada is a lead engineer at Epic Games, where

he leads the tracing development in the Unreal Engine
engineering team. Before, Juan was head of the Visualization
Division at Next Limit Technologies, where he led the Maxwell
Render team for more than 10 years. He also was a teacher of
data visualization and big data at the |IE Business School.

CONTRIBUTORS

Petrik Clarberg is a senior research scientist at NVIDIA since
2016, where he pushes the boundaries of real-time rendering.
His research interests include physically based rendering,
sampling and shading, and hardware/API development of
new features. Prior to his current role Petrik was a research
scientist at Intel since 2008 and cofounder of a graphics
startup. Participation in the 1990s demo scene inspired him
to pursue graphics and get a PhD in computer science from
Lund University.

David Cline received a PhD in computer science from
Brigham Young University in 2007. After graduating, he
worked as a postdoctoral scholar at Arizona State University
and then went to Oklahoma State University, where he
worked as an assistant professor until 2018. He is currently
a software developer at NVIDIA working in the real-time ray
tracing group in Salt Lake City.

Alejandro Conty Estevez is a senior rendering engineer at
Sony Pictures Imageworks since 2009 and has developed
several components of the physically based rendering
pipeline such as BSDFs, lighting, and integration algorithms,
including Bidirectional Path Tracing and other hybrid
techniques. Previous to that he was the creator and main
developer of YafRay, an opensource render engine released
around 2003. He received an MS in computer science from
Oviedo University in Spain in 2004.

Petter Edblom is a software engineer on the Frostbite
rendering team at Electronic Arts. Previously, he was at DICE
for several game titles, including Star Wars Battlefront | and I
and Battlefield 4 and V. He has a master’s degree in computing
science from Umead University.

XXV

CONTRIBUTORS

Christiaan Gribble is a principal research scientist and

the team lead for high-performance computing in the
Applied Technology Operation at the SURVICE Engineering
Company. His research explores the synthesis of interactive
visualization and high-performance computing, focusing

on algorithms, architectures, and systems for predictive
rendering and visual simulation applications. Prior to joining
SURVICE in 2012, Gribble held the position of associate
professor in the Department of Computer Science at Grove
City College. Gribble received a BS in mathematics from

Grove City College in 2000, an MS in information networking from Carnegie Mellon
University in 2002, and a PhD in computer science from the University of Utah in 2006.

XXVi

Holger Gruen started his career in three-dimensional
real-time graphics over 25 years ago writing software
rasterizers. In the past he has worked for game middleware,
game companies, military simulation companies, and GPU
hardware vendors. He currently works within NVIDIA's
European developer technology team to help developers get
the best out of NVIDIA's GPUs.

Johannes Giinther is a senior graphics software engineer

at Intel. He is working on high-performance, ray tracing-
based visualization libraries. Before joining Intel Johannes
was a senior researcher and software architect for many
years at Dassault Systémes’ 3DEXCITE. He received a PhD in
computer science from Saarland University.

CONTRIBUTORS

Eric Haines currently works at NVIDIA on interactive ray
tracing. He coauthored the books Real-Time Rendering and
An Introduction to Ray Tracing, edited The Ray Tracing News,
and cofounded the Journal of Graphics Tools and the Journal
of Computer Graphics Techniques. He is also the creator and
lecturer for the Udacity MOOC Interactive 3D Graphics.

Henrik Halén is a senior rendering engineer at SEED, a
cross-disciplinary team working on cutting-edge future
technologies and creative experiences at Electronic Arts.
Prior to SEED, he was a senior rendering engineer at
Microsoft, developing cutting-edge rendering techniques

for the Gears of War franchise. Before Microsoft he was a
rendering engineer at Electronic Arts studios in Los Angeles
and at DICE in Stockholm, working on Mirror’s Edge, Medal of
Honor, and Battlefield titles. He has presented at conferences
such as GDC, SIGGRAPH, and Microsoft Gamefest.

David Hart is an engineer on NVIDIA's OptiX team. He has an
MS in computer graphics from Cornell and spent 15 years
making CG films and games for DreamWorks and Disney.
Prior to joining NVIDIA, David founded and sold a company
that makes an online multi-user WebGL whiteboard. David
has a patent on digital hair styling and a side career as an
amateur digital artist using artificial evolution. David’s goal is
to make pretty pictures using computers, and to build great
tools to that end along the way.

XXVii

CONTRIBUTORS

Xxviii

Sébastien Hillaire is a rendering engineer within the
Frostbite engine team at Electronic Arts. You can find him
pushing visual quality and performance in many areas, such
as physically based shading, volumetric simulation and
rendering, visual effects, and post-processing, to name a few.
He obtained his PhD in computer science from the French
National Institute of Applied Science in 2010, during which he
focused on using gaze tracking to visually enhance the virtual
reality user experience.

Antti Hirvonen currently leads graphics engineering at UL
Benchmarks. He joined UL in 2014 as a graphics engineer

to follow his passion for real-time computer graphics after
having worked many years in other software fields. Over the
years Antti has made significant contributions to 3DMark, the
world-renowned gaming benchmark, and related internal
development tools. His current interests include modern
graphics engine architecture, real-time global illumination,
and more. Antti holds an MSc (Technology) in computer
science from Aalto University.

Johannes Jendersie is a PhD student at the Technical
University Clausthal, Germany. His current research
focuses on the improvement of Monte Carlo light transport
simulations with respect to robustness and parallelization.
Johannes received a BA in computer science and an MS in
computer graphics from the University of Magdeburg in 2013
and 2014, respectively.

CONTRIBUTORS

Tero Karras is a principal research scientist at NVIDIA
Research, which he joined in 2009. His current research
interests revolve around deep learning, generative models,
and digital content creation. He has also had a pivotal role in
NVIDIA's real-time ray tracing efforts, especially related to
efficient acceleration structure construction and dedicated
hardware units.

Alexander Keller is a director of research at NVIDIA. Before,
he was the chief scientist of mental images, where he

was responsible for research and the conception of future
products and strategies including the design of the NVIDIA
Iray light transport simulation and rendering system. Prior

to industry, he worked as a full professor for computer
graphics and scientific computing at Ulm University, where he
cofounded the UZWR (Ulmer Zentrum fiir wissenschaftliches
Rechnen) and received an award for excellence in teaching.
Alexander Keller has more than three decades of experience

in ray tracing, pioneered quasi-Monte Carlo methods for light transport simulation, and
connected the domains of machine learning and rendering. He holds a PhD, has authored
more than 30 granted patents, and has published more than 50 research articles.

Patrick Kelly is a senior rendering programmer at Epic
Games, working on real-time ray tracing with Unreal Engine.
Before entering real-time rendering, Patrick spent nearly

a decade working in offline rendering at studios such as
DreamWorks Animation, Weta Digital, and Walt Disney
Animation Studios. Patrick received a BS in computer science
from the University of Texas at Arlington in 2004 and an MS in
computing from the University of Utah in 2008.

XXX

CONTRIBUTORS

Hyuk Kim is currently working as an engine and graphics
programmer for Dragon Hound at NEXON Korea, devCAT
Studio. He decided to become a game developer after

being inspired by John Carmack’s original Doom. His main
interests are related to real-time computer graphics in the
game industry. He has a master’s degree focused on ray
tracing from Sogang University. Currently his main interest
is technology for moving from offline to real-time rendering
for algorithms such as ray tracing, global illumination, and
photon mapping.

Aaron Knoll is a developer technology engineer at NVIDIA
Corporation. He received his PhD in 2009 from the University
of Utah and has worked in high-performance computing
facilities including Argonne National Laboratory and

Texas Advanced Computing Center. His research focuses

on ray tracing techniques for large-scale visualization in
supercomputing environments. He was an early adopter and
contributor to the OSPRay framework and now works on
enabling ray traced visualization with NVIDIA OptiX.

Samuli Laine is a principal research scientist at NVIDIA. His
current research focuses on the intersection of neural
networks, computer vision, and computer graphics.
Previously he has worked on efficient GPU ray tracing,
voxel-based geometry representations, and various methods
for computing realistic illumination. He completed both his
MS and PhD in computer science at Helsinki University of
Technology in 2006.

CONTRIBUTORS

Andrew Lauritzen is a senior rendering engineer at SEED,

a cross-disciplinary team working on cutting-edge future
technologies and creative experiences at Electronic Arts.
Before that, Andrew was part of the Advanced Technology
Group at Intel, where he worked to improve the algorithms,
APls, and hardware used for rendering. He received his
MMath in computer science from the University of Waterloo
in 2008, where his research was focused on variance shadow
maps and other shadow filtering algorithms.

Nick Leaf is a software engineer at NVIDIA and PhD student
in computer science at the University of California, Davis.
His primary research concentration is large-scale analysis
and visualization, with an eye toward in situ visualization in
particular. Nick completed his BS in physics and computer
science at the University of Wisconsin in 2008.

Pascal Lecocq is a senior rendering engineer at Sony Picture
Imageworks since 2017. He received a PhD in computer
science from the University of Paris-Est Marne-la-Vallée in
2001. Prior to Imageworks, Pascal has worked successively at
Renault, STT Systems, and Technicolor, were he investigated
and developed real-time rendering techniques for driving
simulators, motion capture, and the movie industry. His main
research interests focus on real-time shadows, area-light
shading, and volumetrics but also on efficient path tracing
techniques for production rendering.

XXXI

CONTRIBUTORS

XXXII

Edward Liu is a senior research scientist at NVIDIA Applied
Deep Learning Research, where he explores the exciting
intersection between deep learning, computer graphics,

and computer vision. Before his current role, he worked on
other teams at NVIDIA such as the Developer Technology and
the Real-Time Ray Tracing teams, where he contributed to
the research and development of various novel features on
future GPU architectures, including real-time ray tracing,
image reconstruction, and virtual reality rendering. He has
also spent time optimizing performance for GPU applications.
In his spare time, he enjoys traveling and landscape
photography.

Ignacio Llamas is the director of real-time ray tracing
software at NVIDIA, where he leads a team of rendering
engineers working on real-time rendering with ray tracing
and pushing NVIDIA's RTX technology to the limit. He has
worked at NVIDIA for over a decade, in multiple roles
including driver development, developer technology,
research, and GPU architecture.

Adam Marrs is a computer scientist in the Game Engines and
Core Technology group at NVIDIA, where he works on real-
time rendering for games and film. His experience includes
work on commercial game engines, shipped game titles, real-
time ray tracing, and published graphics research. He holds

a PhD and an MS in computer science from North Carolina
State University and a BS in computer science from Virginia
Polytechnic Institute.

CONTRIBUTORS

Morgan McGuire is a distinguished research scientist at
NVIDIA in Toronto. He researches real-time graphics systems
for novel user experiences. Morgan is the author or coauthor
of The Graphics Codex, Computer Graphics: Principles and
Practice (third edition), and Creating Games. He holds faculty
appointments at Williams College, the University of Waterloo,
and McGill University, and he previously worked on game and
graphics technology for Unity and the Roblox, Skylanders, Titan
Quest, Call of Duty, and Marvel Ultimate Alliance game series.

Peter Messmer is a principal engineer at NVIDIA and leads
the high-performance computing visualization group. He
focuses on developing tools and methodologies enabling
scientists to use the GPU’s visualization capabilities to gain
insight into their simulation results. Prior to joining NVIDIA,
Peter developed and used massively parallel simulation
codes to investigate plasma physics phenomena. Peter holds
an MS and a PhD in physics from Eidgendssische Technische
Hochschule (ETH) Zurich, Switzerland.

Pierre Moreau is a PhD student in the computer graphics
group at Lund University in Sweden and a research intern

at NVIDIA in Lund. He received a BSc from the University of
Rennes 1 and an MSc from the University of Bordeaux, both in
computer science. His current research focuses on real-time
photorealistic rendering using ray tracing or photon splatting.
Outside of work, he enjoys listening to and playing music,

as well as learning more about GPU hardware and how to
program it.

R. Keith Morley is currently a development technology
engineer at NVIDIA, responsible for helping key partners
design and implement ray tracing-based solutions on NVIDIA
GPUs. His background is in physically based rendering, and
he worked in feature film animation before joining NVIDIA.
He is one of the original developers of NVIDIA's Optix ray
tracing APL.

XXXiii

CONTRIBUTORS

XXXIV

Jacob Munkberg is a senior research scientist in NVIDIA's
real-time rendering research group. His current research
focuses on machine learning for computer graphics. Prior to
NVIDIA, he worked in Intel’s Advanced Rendering Technology
team and cofounded Swiftfoot Graphics, specializing in culling
technology. Jacob received his PhD in computer science

from Lund University and his MS in engineering physics from
Chalmers University of Technology.

Clemens Musterle is a rendering engineer and currently is
working as the team lead for rendering at Enscape. In 2015
he received an MS in computer science from the Munich
University of Applied Sciences with a strong focus on real-
time computer graphics. Before joining the Enscape team
in 2015, he worked several years at Dassault Systemes’
3DEXCITE.

Jim Nilsson received his PhD in computer architecture from
Chalmers University of Technology in Sweden. He joined
NVIDIA in October 2016, and prior to NVIDIA, he worked in the
Advanced Rendering Technology group at Intel.

Matt Pharr is a research scientist at NVIDIA, where he works
on ray tracing and real-time rendering. He is the author of
the book Physically Based Rendering, for which he and the
coauthors were awarded a Scientific and Technical Academy
Award in 2014 for the book’s impact on the film industry.

CONTRIBUTORS

Matthias Raab joined Mental Images (later NVIDIA ARC)

in 2007, where he initially worked as a rendering software
engineer on the influential ray tracing system Mental Ray. He
has been heavily involved in the development of the GPU-
based photorealistic renderer NVIDIA Iray since its inception,
where he contributed in the areas of material description and
quasi-Monte Carlo light transport simulation. Today he is part
of the team working on NVIDIA's Material Definition Language
(MDL).

Alexander Reshetov received his PhD from the Keldysh
Institute for Applied Mathematics in Russia. He joined NVIDIA
in January 2014. Prior to NVIDIA, he worked for 17 years at
Intel Labs on three-dimensional graphics algorithms and
applications, and for two years at the Super-Conducting
Super-Collider Laboratory in Texas, where he designed the
control system for the accelerator.

Charles de Rousiers is a rendering engineer within the
Frostbite engine team at Electronic Arts. He works lighting,
material, and post-processes, and he helped to move the
engine onto physically based rendering principles. He
obtained his PhD in computer science at Institut National de
Recherche en Informatique et en Automatique (INRIA) in 2011,
after studying realistic rendering of complex materials.

XXXV

CONTRIBUTORS

XXXVi

Rahul Sathe works as a senior DevTech engineer at

NVIDIA. His current role involves working with game
developers to improve the game experience on GeForce
graphics and prototyping algorithms for new and upcoming
architectures. Prior to this role, he worked in various
capacities in research and product groups at Intel. He is
passionate about all aspects of 3D graphics and its hardware
underpinnings. He attended school at Clemson University and
the University of Mumbai. While not working on rendering-
related things, he likes running, biking, and enjoying good
food with his family and friends.

Daniel Seibert is a senior graphics software engineer at
NVIDIA in Berlin. Crafting professional renderers for a living
since 2007, he is an expert in quasi-Monte Carlo methods
and physically based light transport simulation. Daniel has
contributed to the Mental Ray renderer and the NVIDIA Iray
light transport simulation and rendering system, and he is
one of the designers of MDL, NVIDIA's Material Definition
Language.

Atte Seppala works as a graphics software engineer at UL
Benchmarks. He holds an MSc (Technology) in computer
science from Aalto University and has worked at UL
Benchmarks since 2015, developing the 3DMark and VRMark
benchmarks.

CONTRIBUTORS

Peter Shirley is a distinguished research scientist at

NVIDIA. He was formally a cofounder two software
companies and was a professor/researcher at Indiana
University, Cornell University, and the University of Utah. He
received a BS in physics from Reed College in 1985 and a PhD
in computer science from the University of Illinois in 1991. He
is the coauthor of several books on computer graphics and a
variety of technical articles. His professional interests include
interactive and high dynamic range imaging, computational
photography, realistic rendering, statistical computing,
visualization, and immersive environments.

Niklas Smal works as a graphics software engineer at UL
Benchmarks. He joined the company in 2015 and has been
developing 3DMark and VRMark graphics benchmarks.
Niklas holds a BSc (Technology] in computer science and is
currently finishing his MSc at Aalto University.

Josef Spjut is a research scientist at NVIDIA working on
esports, augmented reality, and ray tracing. Prior to joining
NVIDIA, he was a visiting professor in the department of
engineering at Harvey Mudd College. He received a PhD from
the Hardware Ray Tracing group at the University of Utah
and a BS from the University of California, Riverside, both in
computer engineering.

XXXVii

CONTRIBUTORS

Tomasz Stachowiak is a software engineer with a passion
for shiny pixels and low-level GPU hacking. He enjoys fast
compile times, strong type systems, and making the world a
weirder place.

Clifford Stein is a software engineer at Sony Pictures
Imageworks, where he works on their in-house version of
the Arnold renderer. For his contributions to Arnold, Clifford
was awarded an Academy Scientific and Engineering Award
in 2017. Prior to joining Sony, he was at STMicroelectronics,
working on a variety of projects from machine vision

to advanced rendering architectures, and at Lawrence
Livermore National Laboratory, where he did research on
simulation and visualization algorithms. Clifford holds a BS
from Harvey Mudd College and an MS and PhD from the
University of California, Davis.

John E. Stone is a senior research programmer in the
Theoretical and Computational Biophysics Group at the
Beckman Institute for Advanced Science and Technology

and an associate director of the NVIDIA CUDA Center

of Excellence at the University of Illinois. John is the

lead developer of Visual Molecular Dynamics (VMD), a
high-performance molecular visualization tool used by
researchers all over the world. His research interests include
scientific visualization, GPU computing, parallel computing,
ray tracing, haptics, and virtual environments. John was
awarded as an NVIDIA CUDA Fellow in 2010. In 2015 he joined the Khronos Group Advisory
Panel for the Vulkan Graphics API. In 2017 and 2018 he was awarded as an IBM Champion
for Power for innovative thought leadership in the technical community. John also provides

consulting services for projects involving computer graphics, GPU computing, and high-
performance computing. He is a member of ACM SIGGRAPH and IEEE.

XXXV

CONTRIBUTORS

Robert Toth is a senior software engineer at NVIDIA in Lund,
Sweden, working on ray tracing driver development. He
received an MS in engineering physics at Lund University in
2008. Robert worked as a research scientist in the Advanced
Research Technology team at Intel for seven years developing
algorithms for the Larrabee project and for integrated
graphics solutions, with a research focus on stochastic
rasterization methods, shading systems, and virtual reality.

Carsten Wachter spent his entire career in ray tracing
software, including a decade of work on the Mental Ray and
Iray renderers. Holding multiple patents and inventions in this
field, he is now leading a team at NVIDIA involved in core GPU
acceleration for NVIDIA ray tracing libraries. After finishing
his diploma, he then received his PhD from the University of
Ulm for accelerating light transport using new quasi-Monte
Carlo methods for sampling, along with memory efficient and
fast algorithms for ray tracing. In his spare time he preserves
pinball machines, both in the real world and via open source
pinball emulation and simulation.

Ingo Wald is a director of ray tracing at NVIDIA. He received
his master’s degree from Kaiserslautern University and his
PhD from Saarland University (both on ray tracing-related
topics). He then served as a post-doctorate at the Max-
Planck Institute Saarbricken, as a research professor at the
University of Utah, and as technical lead for Intel’s software-
defined rendering activities (in particular, Embree and
OSPRay]). Ingo has coauthored more than 75 papers, multiple
patents, and several widely used software projects around
ray tracing. His interests still revolve around all aspects of
efficient and high-performance ray tracing, from visualization to production rendering,
from real-time to offline rendering, and from hard- to software.

XXXiX

CONTRIBUTORS

Graham Wihlidal is a senior rendering engineer at SEED,
a cross-disciplinary team working on cutting-edge future
technologies and creative experiences at Electronic Arts.

/:!; ;;“ Before SEED, Graham was on the Frostbite rendering team,
e, implementing and supporting technology used in many hit
| ; games such as Battlefield, Dragon Age: Inquisition, Plants vs.

&-/ Zombies, FIFA, Star Wars: Battlefront, and others. Prior to
A Frostbite, Graham was a senior engineer at BioWare for many
years, shipping numerous titles including the Mass Effect and

Dragon Age trilogies and Star Wars: The Old Republic. Graham
is also a published author and has presented at a number of
conferences.

Thomas Willberger is the CEO and founder of Enscape.
Enscape offers workflow-integrated real-time rendering

and is used by more than 80 of the top 100 architectural
companies. His topics of interest include image filtering,
volumetrics, machine learning, and physically based shading.
He received a BS in mechanical engineering from the
Karlsruhe Institute of Technology (KIT] in 2011.

Michael Wimmer is currently an associate professor at

the Institute of Visual Computing and Human-Centered
Technology at Technische Universitat (TU) Wien, where he
heads the Rendering and Modeling Group. His academic
career started with his MSc in 1997 at TU Wien, where he also
obtained his PhD in 2001. His research interests are real-time
rendering, computer games, real-time visualization of urban
environments, point-based rendering, reconstruction of urban

models, procedural modeling, and shape modeling. He has
coauthored over 130 papers in these fields. He also coauthored
the book Real-Time Shadows. He regularly serves on program committees of the important
conferences in the field, including ACM SIGGRAPH, SIGGRAPH Asia, Eurographics, IEEE VR,
EGSR, ACM I3D, SGP, SMI, and HPG. He is currently an associate editor of /EEE Transactions on
Visualization and Computer Graphics, Computer Graphics Forum, and Computers & Graphics. He
was papers cochair of Eurographics Symposium on Rendering 2008, Pacific Graphics 2012,
Eurographics 2015, and Eurographics Workshop on Graphics and Cultural Heritage 2018.

CONTRIBUTORS

Chris Wyman is a principal research scientist at NVIDIA,
where he works to develop new real-time rendering
algorithms using rasterization, ray tracing, and hybrid
techniques. He uses whatever tools seem appropriate for the
problem at hand, having applied techniques including deep
learning, physically based light transport, and dirty raster
hacks during his career. Chris received a PhD in computer
science from the University of Utah and a BS from the
University of Minnesota, and he taught at the University of
lowa for nearly 10 years.

Notation

Here we summarize the notation used in this book. Vectors are denoted by bold
lowercase letters, e.g., v, and matrices by bold uppercase letters, e.g., M. Scalars
are lowercase, italicized letters, e.g., a and v. Points are uppercase, e.g., P. The
components of a vector are accessed as

v %
X 0 T

v=|v, |=|v :(VX v, VZ) , (1)
4 Vz

where the latter shows the vector transposed, i.e., so a column becomes a row. To
simplify the text, we sometimes also use v = (v, v, v,), i.e., where the scalars are
separated by commas, which indicates that it is a column vector shown transposed.
We use column vectors by default, which means that matrix-vector multiplication is
denoted Mv. The components of a matrix are accessed as

My My My
M= My My My, :<m0'm1'm2)' (2)
My, My My,

wherem;, i € {0, 1, 2}, are the column vectors of the matrix. For normalized vectors,
we use the following shorthand notation:

~ d
d=—, (3)
o

i.e., if there is a hat over the vector, it is normalized. A transposed vector and
matrix are denoted vT and MT, respectively. The key elements of our notation are
summarized in the following table:

xLiii

NOTATION

Notation What It Represents

P Point

v Vector

v Normalized vector
M Matrix

A direction vector on a sphere is often denoted by @ and the entire set of directions
on a (hemi)sphere is Q. Finally, note that the cross product between two vectors is
written as a x b and their dot productis a - b.

PART |

RAY 1/RACING
BASICS

N

il | \

~

PART |

Ray Tracing Basics

Today, rasterization dominates real-time rendering across most application
domains, so many readers looking for real-time rendering tips may have last
encountered ray tracing during coursework years, possibly decades ago. This
part contains various introductory chapters to help brush up on the basics, build a
common vocabulary, and provide other simple (but useful] building blocks.

Chapter 1, “Ray Tracing Terminology,” defines common terms used throughout the
book and references seminal research papers that introduced these ideas. For
novice readers, a confusing and evolving variety of overlapping and poorly named
terms awaits as you dig into the literature; reading papers from 30 years ago can
be an exercise in frustration without understanding how terms evolved into those
used today. This chapter provides a basic road map.

Chapter 2, “What Is a Ray?,” covers a couple common mathematical definitions
of a ray, how to think about them, and which formulation is typically used for
modern APIs. While a simple chapter, separating the basics of this fundamental
construct may help remind readers that numerical precision issues abound.
For rasterization, precision issues occur with z-fighting and shadow mapping; in
ray tracing, every ray query requires care to avoid spurious intersections (more
extensive coverage of precision issues comes in Chapter 6).

Recently, Microsoft introduced DirectX Raytracing, an extension to the DirectX
raster API. Chapter 3, “Introduction to DirectX Raytracing,” provides a brief
introduction to the abstractions, mental model, and new shader stages introduced
by this programming interface. Additionally, it walks through and explains the
steps needed to initialize the APl and provides pointers to sample code to help get
started.

Ray tracers allow trivial construction of arbitrary camera models, unlike typical
raster APIs that restrict cameras to those defined by 4 x 4 projection matrices.
Chapter 4, “A Planetarium Dome Master Camera,” provides the mathematics

and sample code to build a ray traced camera for a 180° hemispherical dome
projection, e.g., for planetariums. The chapter also demonstrates the simplicity of
adding stereoscopic rendering or depth of field when using a ray tracer.

Chapter 5, “Computing Minima and Maxima of Subarrays,” describes three
computation methods (with various computational trade-offs] for a fundamental
algorithmic building block: computing the minima or maxima of arbitrary subsets
of an array. On the surface, evaluating such queries is not obviously related to ray
tracing, but it has applications in domains such as scientific visualization, where ray
queries are commonly used.

The information in this part should help you get started with both understanding
the basics of modern ray tracing and the mindset needed to efficiently render
using it.

Chris Wyman

CHAPTER 1

Ray Tracing Terminology

Eric Haines and Peter Shirley

NVIDIA

1.1

ABSTRACT

This chapter provides background information and definitions for terms used
throughout this book.

HISTORICAL NOTES

Ray tracing has a rich history in disciplines that track the movement of light in an
environment, often referred to as radiative transfer. Graphics practitioners have
imported ideas from fields such as neutron transport [2], heat transfer [6], and
illumination engineering [11]. Since so many fields have studied these concepts,
terminology evolves and sometimes diverges between and within disciplines.
Classic papers may then appear to use terms incorrectly, which can be confusing.

The fundamental quantity of light moving along a ray is the Sl unit spectral radiance,
which remains constant along a ray (in a vacuum) and often behaves intuitively like
the perceptual concept brightness. Before the term was standardized, spectral
radiance was often called “intensity” or “brightness.” In computer graphics

we usually drop “spectral,” as non-spectral radiance, a bulk quantity over all
wavelengths, is never used.

Graphics-specific terminology related to rays has evolved over time. Almost

all modern ray tracers are recursive and Monte Carlo; few now bother to call

their renderer a “recursive Monte Carlo” ray tracer. In 1968, Appel [1] used rays

to render images. In 1979, Whitted [16] and Kay and Greenberg [9] developed
recursive ray tracing to depict accurate refraction and reflection. In 1982, Roth [13]
used inside/outside interval lists along rays, as well as local instancing, to create
renderings (and volume estimates) of CSG models.

© NVIDIA 2019
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_1

RAY TRACING GEMS

1.2

In 1984, Cook et al. [4] presented distributed or distribution ray tracing. Elsewhere,
this method is often called stochastic ray tracing' to avoid confusion with distributed
processing. The key insight of randomly sampling to capture effects such as depth
of field, fuzzy reflections, and soft shadows is used in virtually every modern ray
tracer. The next few years after 1984 saw researchers rephrasing rendering using
traditional radiative transfer methods. Two important algorithms were introduced
in 1986. Kajiya [8] referred to the integral transport equation as the rendering
equation. He tried various solutions, including a Monte Carlo approach he named
path tracing. Immel, Cohen, and Greenberg [7] wrote the same transport equation in
different units and solved it with a finite element method now called radiosity.

Since the rephrasing of the graphics problem using classic transport methods three
decades ago, a great deal of work has explored how to numerically solve the problem.
Key algorithmic changes include the bidirectional [10, 14] and path-based [15]
methods introduced in the 1990s. Many details, including how to implement these
techniques in practice, are discussed in Pharr, Jakob, and Humphreys’s

book [12].

DEFINITIONS

We highlight important terms used in this book. No standard set of terms exists,
other than terms with standardized units, but our definitions reflect current usage
in the field.

Ray casting is the process of finding the closest, or sometimes just any, object along
aray. See Chapter 2 for the definition of a ray. A ray leaves the camera through a
pixel and travels until it hits the closest object. As part of shading this hit point, a
new ray could be cast toward a light source to determine if the object is shadowed.
See Figure 1-1.

'The name derives from another paper by Cook [3], where he discusses using nonuniform sampling to avoid

aliasing artifacts by turning them into noise.

8

RAY TRACING TERMINOLOGY

Image
Camera

E Light Source

Shadow Ray

\

Figure 1-1. Ray casting. A ray travels from the camera’s location through a grid of pixels into the
scene. At each location another ray is cast toward the light to determine if the surface is illuminated or
in shadow. (Illustration after Henrik, “Ray tracing (graphics),” Wikipedia.)

Ray tracing uses the ray casting mechanism to recursively gather light contributions
from reflective and refractive objects. For example, when a mirror is encountered,
aray is cast from a hit point on the mirror in the reflection direction. Whatever

this reflection ray intersects affects the final shading of the mirror. Likewise,
transparent or glass objects may spawn both a reflection and a refraction ray. This
process occurs recursively, with each new ray potentially spawning additional
reflection and refraction rays. Recursion is usually given some cutoff limit, such

as a maximum number of bounces. This tree of rays is evaluated back up its chain
to give a color. As before, each intersection point can be queried whether it is
shadowed by casting a ray toward each light source. See Figure 1-2.

RAY TRACING GEMS

Solid Box

Camera

Joady

Figure 1-2. Ray tracing. Three rays travel from the camera into the scene. The top, green ray directly
hits a box. The middle, purple ray hits a mirror and reflects to pick up the back of the box. The bottom,
blue ray hits a glass sphere, spawning reflection and refraction rays. The refraction ray in turn
generates two more child rays, with the one traveling through the glass spawning two more.

In Whitted or classical ray tracing, surfaces are treated as perfectly shiny and
smooth, and light sources are represented as directions or infinitesimal points.

In Cook or stochastic ray tracing, more rays can be emitted from nodes in the ray
tree to produce various effects. For example, imagine a spherical light instead

of a point source. Surfaces can now be partially illuminated, so we might shoot
numerous rays toward different locations on the sphere to approximate how much
illumination arrives. When integrating area light visibility, fully shadowed points lie
in the umbra; partially lit points are inside the penumbra. See Figure 1-3.

L Penumbra J

Figure 1-3. An area light casts a soft penumbra shadow region, with the umbra being fully in shadow.

RAY TRACING TERMINOLOGY

By shooting numerous rays in a cone around the reflection direction and blending
the results, we get glossy instead of mirrored reflections. See Figure 1-4. This idea
of spreading samples can also be used to model translucency, depth of field, and
motion blur effects.

Figure 1-4. Mirror, glossy, and diffuse reflection rays. Left: the incoming light is reflected in a single
direction off a mirrored surface. Middle: the surface is polished, such as brass, reflecting light near
the reflection direction and giving a glossy appearance. Right: the material is diffuse or matte, such as
plaster, and incoming light scatters in all directions.

In the real world many sources emit light, which works its way to the eye by various
means, including refraction and reflection. Glossy surfaces reflect light in many
directions, not just along the reflection direction; diffuse or matte surfaces disperse
light in a wider spread still. In path tracing we reverse the light’s scattering
behavior, using the outgoing direction and the material to help determine the
importance of various incoming directions to the surface’s shade.

Tracking such complex light transport quickly becomes overwhelming and can
easily lead to inefficient rendering. To create an image, we just need the light
passing through the camera’s lens from a specific set of directions. Recursive ray
tracing in its various forms reverses the physical process, generating rays from the
eye in directions that we know will affect the image.

In Kajiya-style or path tracing light reflects off matte surfaces in the scene, allowing
for all light paths in the real world (except phase effects such as diffraction). Here
a path refers to a series of light-object interactions that starts at the camera and
ends at a light.

Each surface intersection location needs to estimate the contributions of light from
all directions surrounding it, combined with its surface’s reflective properties. For
example, a red wall next to a white ceiling will reflect red light onto the ceiling, and
vice versa. Further interreflection between the wall and ceiling occurs, as each
further reflects this reflected light, which can then affect the other. By recursively
summing up these effects from the eye’s view, terminating only when a light is
encountered, a true, physically based image can be formed.

The working phrase here is “can be"—if we shoot a set of, say, a thousand
rays from an intersection point on a rough surface, then for each of those rays

RAY TRACING GEMS

we recursively send another thousand each, on and on until a light source is
encountered for each ray, and we could be computing a single pixel for nearly
forever. Instead, when a ray is cast from the eye and hits a visible surface, a path
tracer will spawn just one ray in a useful direction from a surface. This ray in turn
will spawn a new ray, on and on, with the set of rays forming a path. Blending
together a number of paths traced for a pixel gives an estimate of the true radiance
for the pixel, a result that improves as more paths are evaluated. Path tracing can,
with proper care, give an unbiased result, one matching physical reality.

Most modern ray tracers use more than one ray per pixel as part of an underlying
Monte Carlo (MC) algorithm. Cook-style and Kajiya-style algorithms are examples.
These methods all have some understanding of various probability density functions
(PDFs) over some spaces. For example, in a Cook-style ray tracer we might include
a PDF over the lens area. In a path-based method the PDF would be over paths in
what is called a path space.

Making the sampling PDF for a Monte Carlo algorithm nonuniform in order to
reduce error is known as importance sampling. Creating random samples using
low-discrepancy patterns of samples with number-theoretic methods, rather

than conventional pseudo-random number generators, is known as Quasi-Monte
Carlo (QMC) sampling. To a large extent, computer graphics practitioners use the
standard terminology of the fields of MC and QMC. However, this practice can give
rise to confusing synonyms. For example, “direct illumination with shadow rays” in
graphics are an example of “next event estimation” in MC/QMC.

From a formal perspective, renderers are solving the transport equation, also
commonly called the rendering equation for the graphics-specific problem. This is
usually written as an energy-balanced equation at a point on a surface. Notation
varies somewhat in the literature, but there is increasing similarity to this form:

o’ i

L,(Pa,)= [f(P o, o)L (Pa)l costda. (1)

Here, L, is the radiance leaving the surface at point Pin direction w,, and the
surface property fis the bidirectional reflectance distribution function (BRDF). This
function is also commonly denoted with f. or p. Also, L; is the incoming light along
direction w;, and the angle between the surface normal and the incoming light
direction is @, with | cos 6| accounting for geometric dropoff due to this angle. By
integrating the effect of light from all surfaces and objects, not just light sources, in
allincoming directions and folding in the effect of the surface’s BRDF, we obtain the
radiance, essentially the color of the ray. As L; normally is computed recursively,
i.e., all the surfaces visible from point P must in turn have radiance values

RAY TRACING TERMINOLOGY

calculated for them, path tracing and related methods are used to choose among
all the possible paths, with the goal of casting each ray along the path in a direction
that is significant in computing a good approximation of the effect of all possible
directions.

The location point P is often left out as implicit. Also, the wavelength A can be added
as a function input. There are also more general equations that include participating
media, such as smoke or fog, and physical optics effects, such as diffraction.

Related to participating media, ray marching is the process of marching along a ray
by some interval, sampling it along the ray’s direction. This method of casting a
ray is often used for volume rendering, where there is no specific surface. Instead,
at each location the effect of light on the volume is computed by some means. An
alternative to ray marching is to simulate the collisions in a volume.

Ray marching, typically under some variant of Hart's sphere tracing algorithm [5],
is also used to describe the process of intersecting a surface defined by an implicit
distance equation or inside/outside test by sampling points along the rayin a
search for the surface. The “sphere” in this case is a sphere of equidistant points
from the surface; it has nothing to do with intersecting spheres. Following our
earlier notation, this process would ideally be called “sphere casting” instead of
“sphere tracing.” This type of intersection testing is commonly seen in demoscene
programs and is popularized online by the Shadertoy website.

We have touched upon just the basics of ray-related rendering techniques and the
terminology used. See this book’'s website http://raytracinggems.comfor a
guide to further resources.

REFERENCES

[11 Appel, A. Some Techniques for Shading Machine Renderings of Solids. In AFIPS "68 Spring Joint
Computer Conference (1968), pp. 37-45.

[2]1 Arvo, J., and Kirk, D. Particle Transport and Image Synthesis. Computer Graphics (SIGGRAPH) 24,
4(1990), 63-66.

[3] Cook, R. L. Stochastic Sampling in Computer Graphics. ACM Transactions on Graphics 5, 1 (Jan.
1986), 51-72.

[4] Cook, R.L., Porter, T., and Carpenter, L. Distributed Ray Tracing. Computer Graphics [SIGGRAPH]
18, 3 (1984), 137-145.

[5] Hart, J. C. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit
Surfaces. The Visual Computer 12, 10 (Dec 1996), 527-545.

[6] Howell, J. R., Menguc, M. P.,, and Siegel, R. Thermal Radiation Heat Transfer. CRC Press, 2015.

http://raytracinggems.com

RAY TRACING GEMS

[71

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Qoo

Immel, D. S., Cohen, M. F., and Greenberg, D. P. A Radiosity Method for Non-Diffuse
Environments. Computer Graphics (SIGGRAPH)] 20, 4 (Aug. 1986), 133-142.

Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH] (1986), 143-150.

Kay, D. S., and Greenberg, D. Transparency for Computer Synthesized Images. Computer
Graphics (SIGGRAPH] 13, 2 (1979), 158-164.

Lafortune, E. P. Bidirectional Path Tracing. In Compugraphics (1993), pp. 145-153.

Larson, G. W., and Shakespeare, R. Rendering with Radiance: The Art and Science of Lighting
Visualization. Booksurge LLC, 2004.

Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation, third ed. Morgan Kaufmann, 2016.

Roth, S. D. Ray Casting for Modeling Solids. Computer Graphics and Image Processing 18, 2 (1982,
109-144.

Veach, E., and Guibas, L. Bidirectional Estimators for Light Transport. In Photorealistic Rendering
Techniques (1995), pp. 145-167.

Veach, E., and Guibas, L. J. Metropolis Light Transport. In Proceedings of SIGGRAPH (1997),
pp. 65-76.

Whitted, T. An Improved Illumination Model for Shaded Display. Communications of the ACM 23, 6
(June 1980), 343-349.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do

not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder.

14

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 2

What is a Ray?

Peter Shirley, Ingo Wald, Tomas Akenine-Méller, and Eric Haines
NVIDIA

ABSTRACT

We define a ray, show how to use ray intervals, and demonstrate how to specify a
ray using DirectX Raytracing (DXR).

2.1 MATHEMATICAL DESCRIPTION OF A RAY

For ray tracing, an important computational construct is a three-dimensional ray.
In both mathematics and ray tracing, a ray usually refers to a three-dimensional
half-line. Aray is usually specified as an interval on a line. There is no implicit
equation for a line in three dimensions analogous to the two-dimensional line
y=mx + b, so usually the parametric form is used. In this chapter, all lines, points,
and vectors are assumed to be three-dimensional.

A parametric line can be represented as a weighted average of points A and B:

P(t)=(1-t) A+1tB. (1)

In programming, we might think of this representation as a function P(t) that takes
areal number t as input and returns a point P. For the full line, the parameter

can take any real value, i.e., t € [~o0, +o0], and the point P moves continuously
along the line as t changes, as shown in Figure 2-1. To implement this function,

we need a way to represent points A and B. These can use any coordinate system,
but Cartesian coordinates are almost always used. In APls and programming
languages, this representation is often called a vec3 or float3 and contains three
real numbers x, y, and z. The same line can be represented with any two distinct
points along the line. However, choosing different points changes the location
defined by a given t-value.

© NVIDIA 2019 15
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_2

RAY TRACING GEMS

t

Figure 2-1. How varying values of t give different points on the ray.

It is common to use a point and a direction vector rather than two points.
As visualized in Figure 2-2, we can choose our ray direction d as B — A and our
ray origin O as point A, giving

P(t) =0+td. (2)

P(2.0)

Figure 2-2. A ray P(t) = 0 + td, described by an origin O and a ray direction d, which in this case is
d=B — A We often are interested in only positive intersections, i.e., where the points found are in front
of the origin (t > 0). We depict this limitation by drawing the line as dashed behind the origin.

For various reasons, e.g., computing cosines between vectors via dot products,
some programs find it useful to restrict d to be a unit vector a i.e., normalized. One
useful consequence of normalizing direction vectors is that t directly represents
the signed distance from the origin. More generally, the difference in any two
t-values is then the actual distance between the points,

"P(Q)_P([z)"=|tz_l‘1|- (3)
For general vectors d, this formula should be scaled by the length of d,

|P() = P(&)] =t~ - n

16

2.2

WHAT IS A RAY?

RAY INTERVALS

With the ray formulation from Equation 2, our mental picture is of a ray as a semi-
infinite line. However, in ray tracing a ray frequently comes with an additional
interval: the range of t-values for which an intersection is useful. Generally,

we specify this interval as two values, t;, and t.,, which bound the t-value to

t € [tmin, tmaxl- N Other words, if an intersection is found at t, that intersection will not
be reported if t < ty, ort > t.x. See Figure 2-3.

Figure 2-3. In this example there is a light source at L and we want to search for intersections
between only 0 and L. A ray interval [t,,, tms] is used to limit the search for intersections for t-values
t0 [t i tmax]. To avoid precision problems, this restriction is implemented by setting the ray interval to
[e, 1 — &l, giving the interval shown in light blue in this illustration.

A maximum value is given when hits beyond a certain distance do not matter, such
as for shadow rays. Assume that we are shading point P and want to query visibility
of a light at L. We create a shadow ray with origin at O = P, unnormalized direction
vectord=L — P t,,=0,and t,., = 1. If an intersection occurs with tin [0, 1], the

ray intersects geometry occluding the light. In practice, we often set ¢, = € and

tmax =1 — €, for a small number ¢. This adjustment helps avoid self-intersections due
to numerical imprecision; using floating-point mathematics, the surface on which
P lies may intersect our ray at a small, nonzero value of t. For non-point lights the
light’s primitive should not occlude the shadow ray, so we shorten the interval
using tma =1 — . With perfect mathematics, this problem disappears using an open
interval, ignoring intersections at precisely t =0 and 1. Since floating-point precision
is limited, use of e fudge factors are a common solution. See Chapter 6 for more
information about how to avoid self-intersections.

RAY TRACING GEMS

2.3

18

In implementations using normalized ray directions, we could instead use O = P,
d =ﬁ, tmin =€, and . = [— €, where [= ||L — PJ| is the distance to the light source

L. Note that this epsilon must be different than the previous epsilon, as t now
has a different range.

Some renderers use unit-length vectors for all or some ray directions. Doing so
allows efficient cosine computations via dot products with other unit vectors, and it
can make it easier to reason about the code, in addition to making it more readable.
As noted earlier, a unit length means that the ray parameter t can be interpreted
as a distance without scaling by the direction vector’s length. However, instanced
geometry may be represented using a transformation for each instance. Ray/object
intersection then requires transforming the ray into the object’s space, which
changes the length of the direction vector. To properly compute tin this new space,
this transformed direction should be left unnormalized. In addition, normalization
costs a little performance and can be unnecessary, as for shadow rays. Because of
these competing benefits, there is no universal recommendation of whether to use
unit direction vectors.

RAYS IN DXR

This section presents the definition of a ray in DirectX Raytracing [3]. In DXR, a ray
is defined by the following structure:

1 struct RayDesc

2 {

3 float3 origin;

4 float TMin;

5 float3 Direction;
6 float TMax;

7}

The ray type is handled differently in DXR, where a certain shader program is
associated with each different type of ray. To trace a ray with the TraceRay ()
function in DXR, a RayDesc is needed. The RayDesc::0rigin is set to the origin
O of our ray, the RayDesc::Direction is set to the direction d, and the t-interval
(RayDesc::TMin and RayDesc::TMax) must be initialized as well. For example, for
an eye ray (RayDesc eyeRay) we set eyeRay.TMin = 0.0 and eyeRay.TMax =
FLT_MAX, which indicates that we are interested in all intersections that are in front
of the origin.

WHAT IS A RAY?

2.4 CONCLUSION

This chapter shows how a ray is typically defined and used in a ray tracer, and

gave the DXR API’'s ray definition as an example. Other ray tracing systems, such
as OptiX [1] and the Vulkan ray tracing extension [2], have minor variations. For
example, OptiX explicitly defines a ray type, such as a shadow ray. These systems
have other commonalities, such as the idea of a ray payload. This is a data structure
that can be defined by the user to carry additional information along with the ray
that can be accessed and edited by separate shaders or modules. Such data is
application specific. At the core, in every rendering system that defines a ray, you
will find the ray’s origin, direction, and interval.

REFERENCES

[1] NVIDIA. OptiX 5.1 Programming Guide. http://raytracing-docs.nvidia.com/optix/
guide/index.htm1, Mar. 2018.

[2] Subtil, N. Introduction to Real-Time Ray Tracing with Vulkan. NVIDIA Developer Blog, https://
devblogs.nvidia.com/vulkan-raytracing/, Oct. 2018.

[3] Wyman, C., Hargreaves, S., Shirley, P., and Barré-Brisebois, C. Introduction to DirectX
RayTracing. SIGGRAPH Courses, Aug. 2018.

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

http://raytracing-docs.nvidia.com/optix/guide/index.html
http://raytracing-docs.nvidia.com/optix/guide/index.html
https://devblogs.nvidia.com/vulkan-raytracing/
https://devblogs.nvidia.com/vulkan-raytracing/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 3

Introduction to DirectX Raytracing

Chris Wyman and Adam Marrs
NVIDIA

ABSTRACT

Modern graphics APIs such as DirectX 12 expose low-level hardware access and
control to developers, often resulting in complex and verbose code that can be
intimidating for novices. In this chapter, we hope to demystify the steps to set up
and use DirectX for ray tracing.

3.1 INTRODUCTION

At the 2018 Game Developers Conference, Microsoft announced the DirectX
Raytracing (DXR) API, which extends DirectX 12 with native support for ray tracing.
Beginning with the October 2018 update to Windows 10, the API runs on all DirectX
12 GPUs, either using dedicated hardware acceleration or via a compute-based
software fallback. This functionality enables new options for DirectX renderers,
ranging from full-blown, film-quality path tracers to more humble ray-raster
hybrids, e.g., replacing raster shadows or reflections with ray tracing.

As with all graphics APls, a few prerequisites are important before diving into
code. This chapter assumes a knowledge of ray tracing fundamentals, and we
refer readers to other chapters in this book, or introductory texts [4, 10], for the
basics. Additionally, we assume familiarity with GPU programming; to understand
ray tracing shaders, experience with basic DirectX, Vulkan, or OpenGL helps. For
lower-level details, prior experience with DirectX 12 may be beneficial.

3.2 OVERVIEW

GPU programming has three key components, independent of the API: (1) the
GPU device code, (2] the CPU host-side setup process, and (3) the sharing of

data between host and device. Before we discuss each of these components,
Section 3.3 walks through important software and hardware requirements to get
started building and running DXR-based programs.

We then talk about each core component, starting with how to code DXR shaders
in Sections 3.4, 3.5, and 3.6. The high-level shading language (HLSL) code for DXR
looks similar to a serial CPU ray tracer written in C++. Using libraries to abstract

© NVIDIA 2019 21
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_3

RAY TRACING GEMS

3.3

22

the host-side graphics API (e.g., Falcor [2]), even beginners can build interesting
GPU-accelerated ray tracers quickly. An example of this is shown in Figure 3-1,
which was rendered using Falcor extended with a simple path tracer.

Figure 3-1. The Amazon Lumberyard Bistro rendered with a DirectX-based path tracer.

Section 3.7 provides an overview of the DXR host-side setup process and describes
the mental model that drives the new API. Section 3.8 covers in detail the host-side
steps needed to initialize DXR, build the required ray acceleration structures, and
compile ray tracing shaders. Sections 3.9 and 3.10 introduce the new ray tracing
pipeline state objects and shader tables, respectively, defining data sharing between
host and GPU. Finally, Section 3.11 shows how to configure and launch rays.

DirectX abstracts the ray acceleration structure, unlike in software renderers where
choosing this structure is a key choice impacting performance. Today’s consensus
suggests bounding volume hierarchies (BVHs) have better characteristics than other
data structures, so the first half of this chapter refers to acceleration structures as
bounding volume hierarchies, even though DirectX does not mandate use of BVHs.
Initializing the acceleration structure is detailed in Section 3.8.1.

GETTING STARTED

To get started building DirectX Raytracing applications, you need a few standard
tools. DXR only runs on Windows 10 RS5 (and later]), also know as version 1809 or
the October 2018 update. Check your Windows version by running winver.exe or by
opening Settings — System — About.

After verifying your operating system, install an updated version of the Windows SDK
including the headers and libraries with DXR functionality. This requires Windows 10
SDK 10.0.17763.0 or above. This may also be called Windows 10 SDK version 1809.

3.4

INTRODUCTION TO DIRECTX RAYTRACING

You need Visual Studio or a similar compiler. Both the professional and free
community versions of Visual Studio 2017 work.

Finally, ray tracing requires a GPU that supports DirectX 12 (check by running
dxdiag.exe). Having hardware-accelerated ray tracing improves performance
dramatically for complex scenes and higher resolutions. Tracing a few rays per
pixel may be feasible on older GPUs, especially when using simple scenes or lower
resolutions. For various reasons, ray tracing typically requires more memory

than rasterization. Hardware with less onboard memory may exhibit terrible
performance due to thrashing.

THE DIRECTX RAYTRACING PIPELINE

A traditional GPU raster pipeline contains numerous programmable stages where
developers write custom shader code to control the image generated. DirectX
Raytracing introduces a new ray primitive and flexible per-ray data storage (see
Section 3.5.1) plus five new shader stages, shown in the simplified pipeline diagram
in Figure 3-2. These shaders enable launching rays, controlling ray/geometry
intersections, and shading the identified hits:

1. The ray generation shader starts the pipeline, allowing developers to specify

which rays to launch using the new built-in TraceRay () shader function.
Similar to traditional compute shaders, it executes on a regular one-, two-, or
three-dimensional grid of samples.

Ray
Generation
Shader

Callto
TraceRay()

Return from
TracerRay()

Closest-Hit
Hit Accepted Shader
ReportHitQ)

Acceleration
Traversal

Intersection
Shader

HitIgnored
IgnoreHit()

Update Hit
Dist.

AW Closest Hit
Distance

Figure 3-2. A simplified view of the new DirectX Raytracing pipeline, including the five new shader
stages (in blue): the ray generation, intersection, any-hit, closest-hit, and miss shaders. The complexity
occurs in the traversal loop (the large gray outline, most of the figure], where rays are tested against
bounding volume nodes and potential hits are identified and ordered to determine the closest hit. Not
shown are potential recursive calls to TraceRay () from the closest-hit and miss shaders.

23

RAY TRACING GEMS

2. Intersection shaders define the computations for ray intersections with
arbitrary primitives. A high-performance default is provided for ray/triangle
intersections.

3. Any-hit shaders' allow controllably discarding otherwise valid intersections,
e.g., ignoring alpha-masked geometry after a texture lookup.

4. A closest-hit shader executes at the single closest intersection along each ray.
Usually, this computes the color at the intersection point, similar to a pixel
shader in the raster pipeline.

5. A miss shader executes whenever a ray misses all geometry in the scene. This
allows, for example, lookups into an environment map or a dynamic skylight
model.

Consider the pseudocode below for a simple CPU ray tracer, as you might find in
an introductory textbook [9]. The code loops over an output image, computing a
direction for each ray, traversing the acceleration structure, intersecting geometry
in overlapping acceleration structure nodes, querying if these intersections are
valid, and shading the final result.

for z,y € image.dims() do

[1] ray = computeRay(x, y);

closestHit = null;

while

leaf = findBvhLeafNode(ray, scene)

do

[2] hit = intersectGeometry(ray,

leaf);

if isCloser(hit, closestHit) then
if [3] isOpaque(hit) then

\\ |_ closestHit = hit;

f closestHit then
[4] image[x,y] = shade(ray,
closestHit);

o

else
| [5] image[x,y] = miss(ray);

'Despite the name, any-hit shaders do not run once per intersection, mostly for performance reasons. By default,

they may run a variable, implementation-dependent number of times per ray. Read the specification closely to

understand and control the behavior for more complex use cases.

24

3.5

3.5.1

INTRODUCTION TO DIRECTX RAYTRACING

At least for standard use cases, the new DXR shaders have correspondences
with parts of this simple ray tracer. The launch size of the ray generation shader
corresponds to the image dimensions. Camera computations to generate each
pixel's ray occur in the ray generation shader.

While a ray traverses the bounding volume hierarchy, actual intersections of
primitives in the leaf node logically occur in DirectX intersection shaders, and
detected intersections can be discarded in the any-hit shader. Finally, once a ray
has completed its traversal through the acceleration structure, it is either shaded
in the closest-hit shader or given a default color in the miss shader.

NEW HLSL SUPPORT FOR DIRECTX RAYTRACING

Augmenting the standard HLSL data types, texture and buffer resources, and
built-in functions (see the DirectX documentation [5]), Microsoft added various
built-in intrinsics to support the functionality needed for ray tracing. New intrinsic
functions fall into five categories:

1. Ray traversal functions spawn rays and allow control of their execution.

2. Launch introspection functions query launch dimensions and identify which ray
(or pixel) the current thread is processing. These functions are valid in any ray
tracing shader.

3. Rayintrospection functions query ray parameters and properties and are
available whenever you have an input ray (all ray tracing shaders except the
ray generation shader).

4. Object introspection functions query object and instance properties and are
usable whenever you have an input primitive (intersection, any-hit, and
closest-hit shaders).

5. Hitintrospection functions query properties of the current intersection.
Properties are largely user defined, so these functions allow communication
between intersection and hit shaders. These functions are available only
during any-hit and closest-hit shaders.

LAUNCHING A NEW RAY IN HLSL

The most important new function, TraceRay(), launches a ray. Logically, this
behaves akin to a texture fetch: it pauses your shader for a variable (and potentially
large) number of GPU clocks, resuming execution when results are available

25

RAY TRACING GEMS

26

for further processing. Ray generation, closest-hit, and miss shaders can call
TraceRay(). These shaders can launch zero, one, or many rays per thread.
The code for a basic ray launch looks as follows:

1 RaytracingAccelerationStructure scene; // Scene BVH from C++
2 RayDesc ray = { rayorigin, minHitDist, rayDirection, maxHitDist };

3 UserDefinedPayloadstruct payload = { ... <initialize here>... };

4

5 TraceRay(scene, RAY_FLAG_NONE, instancesToQuery, // wWhat geometry?

6 hitGroup, numHitGroups, missShader, // Which shaders?

7 ray, // What ray to trace?
8 payload); // What data to use?

The user-defined payload structure contains per-ray data persistent over a ray’s
lifetime. Use it to maintain ray state during traversal and return results from
TraceRay(). DirectX defines the RayDesc structure to store ray origin, direction,
and minimum and maximum hit distances (ordered to pack in two float4s). Ray
intersections outside the specified interval are ignored. The acceleration structure
is defined via the host API (see Section 3.8.1).

The first TraceRay () parameter selects the BVH containing your geometry.
Simple ray tracers often use a single BVH, but independently querying multiple
structures can allow varying behavior for different geometry classes (e.qg.,
transparent/opaque, dynamic/static). The second parameter contains flags that
alter ray behavior, e.g., specifying additional optimizations valid on the ray. The
third parameter is an integer instance mask that allows skipping geometry based
on per-instance bitmasks; this should be OXFF to test all geometry.

The fourth and fifth parameters help select which hit group to use. A hit group
consists of an intersection, closest-hit, and any-hit shader (some of which may

be null). Which set is used depends on these parameters and what geometry type
and BVH instance are tested. For basic ray tracers, there is typically one hit group
per ray type: for example, primary rays might use hit group 0, shadow rays use

hit group 1, and global illumination rays use hit group 2. In that case, the fourth
parameter selects the ray type and the fifth specifies the number of different types.

The sixth parameter specifies which miss shader to use. This simply indexes into
the list of miss shaders loaded. The seventh parameter is the ray to trace, and the
eighth parameter should be this ray’s user-defined persistent payload structure.

3.5.2

3.53

INTRODUCTION TO DIRECTX RAYTRACING

CONTROLLING RAY TRAVERSAL IN HLSL

Beyond specifying flags at ray launch, DirectX provides three additional functions
to control ray behavior in intersection and any-hit shaders. Call ReportHit() in
custom intersection shaders to identify where the ray hits a primitive. An example
of this is the following:

1 if (doesIntersect(ray, curPrim)) {

2 PrimHitAttrib hitAttribs = { ... <initialize here>... };
3 uint hitType = <user-defined-value>;

4 ReportHit(distToHit, hitType, hitAttribs);

51

The inputs to ReportHit() are the distance to the intersection along the ray, a
user-definable integer specifying the type of hit, and a user-definable hit attributes
structure. The hit type is available to hit shaders as an 8-bit unsigned integer
returned by Hitkind(). Itis useful for determining properties of a ray/primitive
intersection, such as face orientation, but is highly customizable since it is user
defined. When a hit is reported by the built-in triangle intersector, HitKind() returns
either D3D12_HIT_KIND_TRIANGLE_FRONT_FACE or D3D12_HIT_KIND_TRIANGLE
BACK_FACE. Hit attributes are passed as a parameter to any-hit and closest-hit
shaders. When using the built-in triangle intersector, hit shaders use a parameter of
type BuiltInTriangleIntersectionAttributes. Also, note that ReportHit()
returns true if the hit is accepted as the closest hit encountered thus far.

Call the function IgnoreHit() in an any-hit shader to stop processing the current
hit point. This returns execution to the intersection shader (and ReportHit()
returns false) and behaves similarly to a discard call in raster except that
modifications to the ray payload are preserved.

Call the function AcceptHitAndEndSearch() in an any-hit shader to accept

the current hit, skip any unsearched BVH nodes, and immediately continue to the
closest-hit shader using the currently closest hit. This is useful for optimizing
shadow ray traversal because these rays simply determine whether anything is hit
without triggering more complex shading and lighting evaluations.

ADDITIONAL HLSL INTRINSICS

All ray tracing shaders can query the current ray launch dimensions

and the index of a thread’s ray with DispatchRaysDimensions() or
DispatchRaysIndex(), respectively. Note that both functions return a uint3,
as ray launches can be one, two, or three dimensional.

For introspection, worldRayorigin(), worldRayDirection(), RayTMin(), and
RayFlags() respectively return the origin, direction, minimum traversal distance,

27

RAY TRACING GEMS

3.6

28

and ray flags provided to TraceRay(). In the any-hit and closest-hit shaders,
RayTCurrent() returns the distance to the current hit. In the intersection shader,
RayTCurrent() returns the distance to the closest hit (which may change during
shader execution). During the miss shader, RayTCurrent() returns the maximum
traversal distance specified to TraceRay().

During intersection, any-hit, and closest-hit shaders, a number of object
introspection intrinsics are available:

> InstanceID() returns a user-defined identifier for the current instance.

> InstanceIndex() and PrimitiveIndex() return system-defined identifiers
for the current instance and primitive.

> ObjectToworld3x4() and ObjectToworld4x3() are transposed matrices
that transform from object space to world space.

> WorldToObject3x4() and WorldToObject4x3() return the matrix from
world space to object space.

> ObjectRayDirection() and ObjectRayOrigin() provide ray data
transformed into the instance’s coordinate space.

A SIMPLE HLSL RAY TRACING EXAMPLE

To provide a more concrete example of how this works in practice, consider the
following HLSL snippet. It defines a ray instantiated by the function ShadowRay(),
which returns 0 if the ray is occluded and 1 otherwise [i.e., a “shadow ray”). As
ShadowRay() calls TraceRay(), it can only be called in ray generation, closest-
hit, or miss shaders. Logically, the ray assumes it is occluded unless the miss
shader executes, when we definitively know the ray is unoccluded. This allows us to
avoid execution of closest-hit shaders (RAY_FLAG_SKIP_CLOSEST_HIT_SHADER]
and to stop after any hit where occlusion occurs (RAY_FLAG_ACCEPT_FIRST_HIT_
AND_END_SEARCH).

RaytracingAccelerationStructure scene; // C++ puts built BVH here

1

2

3 struct ShadowPayload { // Define a ray payload
4 float isvisible; // 0: occluded, 1: visible
5}
6
7
8
9

[shader("miss")] // Define miss shader #0
void ShadowMiss(inout ShadowPayload pay) {
pay.isvisible = 1.0f; // We miss ! Ray unoccluded
10 }

11

INTRODUCTION TO DIRECTX RAYTRACING

12 [shader("anyhit")] // Add to hit group #0
13 void ShadowAnyHit(inout ShadowPayload pay,

14 BuiltInTriangleIntersectionAttributes attrib) {
15 if (isTransparent(attrib, PrimitiveIndex()))

16 IgnoreHit(Q); // Skip transparent hits
17 }

18

19 float shadowray(float3 orig, float3 dir, float minT, float maxT) {
20 RayDesc ray = { orig, minT, dir, maxT }; // Define our new ray.

21 shadowpayload pay = { 0.0f }; // Assume ray is occluded
22 TraceRay(scene,

23 (RAY_FLAG_SKIP_CLOSEST_HIT_SHADER |

24 RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH),

25 OxFF, 0, 1, 0, ray, pay); // Hit group 0; miss O

26 return pay.isvisible; // Return ray payload

27 }

Note that this code uses a custom-written isTransparent() function to query the
material system (based on primitive ID and hit point) to perform alpha testing.

With this in place, shadow rays can easily be cast from other shaders; for example,
a simple ambient occlusion renderer may look as follows:

1 Texture2bD<float4> gBufferpos, gBufferNorm; // Input G-buffer

2 RwTexture2D<float4> output; // output AO buffer

3

4 [shader("raygeneration™)]

5 void SimpleAoExample() {

6 uint2 pixelID = DispatchRaysIndex().xy; // What pixel are we on?
7 float3 pos = gBufferpPos[pixelID].rgb; // AO rays from where?

8 float3 norm = gBufferNorm[pixelID].rgb; // G-buffer normal

9 float aoColor = 0.0f;

10 for (uint i = 0; i < 64; i++) // Use 64 rays.

11 aoColor += (1.0f/64.0f) * shadowRay(pos, GetRandDir(norm), le-4);
12 output[pixelID] = float4(aoColor, aoColor, aoColor, 1.0f);

13 }

The GetRandDir() function returns a randomly chosen direction within the unit
hemisphere defined by the surface normal, and the Te~* minT value passed to
ShadowRay() is an offset to help avoid self-intersections (see Chapter 6 for more
advanced options).

29

RAY TRACING GEMS

3.7 OVERVIEW OF HOST INITIALIZATION FOR DIRECTX RAYTRACING

Until now, we focused on the shader code necessary for DirectX Raytracing. If
using an engine or framework supporting DXR, this should provide enough to
get started. However, when starting from scratch, you also need some low-level
DirectX host-side code to initialize your ray tracer. Detailed in Sections 3.8-3.11,
key initialization steps include:

1. Initialize a DirectX device and verify that it supports ray tracing.
2. Build a ray acceleration structure and specify your scene geometry.
3. Load and compile your shaders.

4. Define root signatures and shader tables to pass rendering parameters from
the CPU to GPU.

5. Define DirectX pipeline state objects for your ray tracing pipeline.
6. Dispatch work to the GPU to actually trace the rays.

As with all DirectX 12 APIs, the ray tracing APl is low level and verbose. Even
simple samples [3] run over 1000 lines of C++ code after allocating all resources,
performing validation, and checking for errors. For clarity and brevity, our code
snippets in the following sections focus on new key functions and structures
needed for ray tracing.

3.7.1 INSIGHT INTO THE MENTAL MODEL

When trying to understand these code snippets, remember the goals. Unlike
rasterization, when ray tracing each ray may intersect arbitrary geometry and
materials. Allowing for this flexibility while also achieving high performance means
making available shader data for all potentially intersected surfaces on the GPU in
a well-organized and easily indexable format. As a result, the process of tracing
rays and shading intersected surfaces are coupled in DirectX, unlike offline or CPU
ray tracers where these two operations are often independent.

Consider the new shader stages in Section 3.4. Ray generation shaders have a
standard GPU programming model, where groups of threads launch in parallel,

but the other shader programs effectively act as callbacks: run one when a ray hits

a sphere, run another to shade a point on a triangle, and run a third when missing

all geometry. Shaders get spawned, wake up, and need to identify work to perform
without the benefit of a continuous execution history. If a spawned shader’s work
depends on geometric properties, DirectX needs to understand this relationship, e.g.,
closest-hit shading may depend on a surface normal computed during intersection.

30

3.8

INTRODUCTION TO DIRECTX RAYTRACING

What information is needed to identify the correct shader to run for a surface?
Depending on the complexity of your ray tracer, shaders may vary based on:

> Raytype: Rays may need different computations (e.g., shadowing].

> Primitive type: Triangles, spheres, cones, etc. may have different needs.
> Primitive identifier: Each primitive may use a different material.

> Instance identifier: Instancing may change the required shading.

In practice, shader selection by the DirectX runtime is a combination of parameters
provided to TraceRay (), geometric information, and per-instance data.

To efficiently implement the flexible tracing and shading operations required by
real-time ray tracing, DXR introduces two new data structures: the acceleration
structure and shader table. Shader tables are especially important because they
serve as the glue tying rays, geometry, and shading operations together. We talk
about each of these in detail in Sections 3.8.1 and 3.10.

BASIC DXR INITIALIZATION AND SETUP

Host-side initialization and setup of DXR extends processes defined by DirectX 12.
Creation of foundational objects such as adapters, command allocators, command
queues, and fences is unchanged. A new device type, ID3D12Dev1ice5, includes
functions to query GPU ray tracing support, determine memory requirements

for ray tracing acceleration structures, and create ray tracing pipeline state

objects [RTPSOs). Ray tracing functions reside in a new command list type,
ID3D12GraphicsCommandList4, including functions for building and manipulating
ray tracing acceleration structures, creating and setting ray tracing pipeline state
objects, and dispatching rays. Sample code to create a device, query ray tracing
support, and create a ray tracing command list follows:

1 IDXGIAdapterl* adapter; // Create as in raster-based code
2 ID3D12CommandAllocator* cmdAlloc; // Create as in raster-based code
3 ID3D12GraphicsCommandList4* cmdList; // Command Tist for ray tracing

4 1ID3D12Device5* dev; // Device for ray tracing

5 HRESULT hr; // Return type for D3D12 calls

6

7 // Create a D3D12 device capable of ray tracing.

8 hr = D3Dl12CreateDevice(adapter, D3D_FEATURE_LEVEL_12_1,

9 _uuidof(ID3D12Device5), (void**)&dev);
10 if (FAILED(Chr)) Exit("Failed to create device");

11
12 // check if the D3D12 device actually supports ray tracing.
13 D3D12_FEATURE_DATA_D3D12_OPTIONS5 caps = {};

31

RAY TRACING GEMS

3.8.1

32

14 hr = dev->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONSS,

15 &caps, sizeof(caps));

16

17 if (FAILEDChr) || caps.RaytracingTier < D3D12_RAYTRACING_TIER_1_0)

18 Exit("Device or driver does not support ray tracing!™);

19

20 // Create a command Tist that supports ray tracing.

21 hr = dev->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT,

22 cmdAlloc, nullptr, IID_PPV_ARGS(& cmdList));

After device creation, ray tracing support is queried via
CheckFeatureSupport() using the new
D3D12_FEATURE_DATA_D3D12_OPTIONSS5 structure. Ray tracing support falls
into tiers defined by the D3D12_RAYTRACING _TIER enumeration. Currently,
two tiers exist: D3D12_RAYTRACING_TIER_1_0 and
D3D12_RAYTRACING_TIER_NOT_SUPPORTED.

GEOMETRY AND ACCELERATION STRUCTURES

Hierarchical scene representations are vital for high-performance ray tracing, as
they reduce tracing complexity from linear to logarithmic in number of ray/primitive
intersections. In recent years, researchers have explored various alternatives for
these ray tracing acceleration structures, but today’s consensus is that variants

of bounding volume hierarchies (BVHs) have the best characteristics. Beyond
hierarchically grouping primitives, BVHs can also guarantee bounded memory usage.

DirectX acceleration structures are opaque, with the driver and underlying
hardware determining data structure and memory layout. Existing
implementations rely on BVHs, but vendors may choose alternate structures.
DXR acceleration structures typically get built at runtime on the GPU and contain
two levels: a bottom and a top level. Bottom-level acceleration structures (BLAS)
contain geometric or procedural primitives. Top-level acceleration structures
(TLAS]) contain one or more bottom-level structures. This allows geometry
instancing by inserting the same BLAS into the TLAS multiple times, each with
different transformation matrices. Bottom-level structures are slower to build
but deliver fast ray intersection. Top-level structures are fast to build, improving
flexibility and reusability of geometry, but overuse can reduce performance. For
best performance, bottom-level structures should overlap as little as possible.

Instead of rebuilding the BVH in dynamic scenes, acceleration structures can be
“refit” if geometry topology remains fixed (only node bounds change). Refits cost
an order of magnitude less than rebuilds, but repeated refits usually degrade
ray tracing performance over time. To balance tracing and build costs, use an
appropriate combination of refits and rebuilds.

INTRODUCTION TO DIRECTX RAYTRACING

3.8.1.1 BOTTOM-LEVEL ACCELERATION STRUCTURE

To create an acceleration structure, start by building the bottom levels. First, use
D3D12_RAYTRACING_GEOMETRY_DESC structures to specify the vertex, index, and
transformation data of geometry contained in the bottom-level structure. Note that
ray tracing vertex and index buffers are not special, but are identical to the buffers
used in rasterization. An example showing how to specify opaque geometry follows:

struct Vertex {
XMFLOAT3 position;
XMFLOAT2 uv;

b

vector<vertex> vertices;

vector<UINT> indices;

ID3D12Resource* vb; // Vertex buffer
ID3D12Resource* ib; // Index buffer

O 00N VLA WN R

e
[

// Describe the geometry.
D3D12_RAYTRACING_GEOMETRY_DESC geometry;
geometry.Type = D3D12_RAYTRACING_GEOMETRY_TYPE_TRIANGLES;

o
w N

14 geometry.Triangles.VertexBuffer.StartAddress =

15 vb->GetGPUVirtualAddress();

16 geometry.Triangles.VertexBuffer.StrideInBytes = sizeof(vertex);

17 geometry.Triangles.VertexCount = static_cast<UINT>(vertices.size());

[
oo

geometry.Triangles.VertexFormat = DXGI_FORMAT_R32G32B32_FLOAT;
19 geometry.Triangles.IndexBuffer = ib->GetGPUvirtualAddress();
20 geometry.Triangles.IndexFormat = DXGI_FORMAT_R32_UINT;

21 geometry.Triangles.IndexCount = static_cast<UINT>(indices.size());
22 geometry.Triangles.Transform3x4 = 0;

23 geometry.Flags = D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE;

When describing BLAS geometry, use flags to inform ray tracing shaders

about the geometry. For example, as we saw in Section 3.4, it is useful for shaders
to know if intersected geometry is opaque or transparent. If geometry is opaque,
specify D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE; otherwise, specify
*_FLAG_NONE.

Next, query the memory needed to build the BLAS and store the fully built structure.
Use the new GetRaytracingAccelerationStructurePrebuildInfo() device
function to get sizes for the scratch and result buffers. The scratch buffer is used
during the build process, and the result buffer stores the completed BLAS.

Build flags describe expected BLAS usage, allowing memory and performance
optimizations. The D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BUILD_
FLAG_MINIMIZE_MEMORY and *_ALLOW_COMPACTION flags help reduce required

33

RAY TRACING GEMS

memory. Other flags request additional desirable characteristics, such as faster
tracing or build time (*_PREFER_FAST_TRACE or *_PREFER_FAST_BUILD) or
allowing dynamic BVH refits (*_ALLOW_UPDATE). Here is a simple example:

O 0O NO VLA WN R

FRRRRRPRRER
NOoO vk WwWN RO

// Describe the bottom-Tevel acceleration structure inputs.
D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_INPUTS ASInputs = {};
ASInputs.Type =
D3D12_RAYTRACING_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL;
ASInputs.DescsLayout = D3D12_ELEMENTS_LAYOUT_ARRAY;

// From previous code snippet
ASInputs.pGeometryDescs = &geometry;

ASInputs.NumDescs = 1;
ASInputs.Flags =
D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BUILD_FLAG_PREFER_FAST_TRACE;

// Get the memory requirements to build the BLAS.
D3D12_RAYTRACING_ACCELERATION_STRUCTURE_PREBUILD_INFO ASBuildiInfo = {};
dev->GetRaytracingAccelerationStructurePrebuildinfo(

&ASInputs, &ASBuildinfo);

After determining the memory required, allocate GPU buffers for the BLAS.

Both scratch and result buffers must support unordered access view (UAV), set
with the D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS flag. Use

D3D12_

RESOURCE_STATE_RAYTRACING_ACCELERATION_STRUCTURE as the

initial state for the final BLAS buffer. With geometry specified and BLAS memory
allocated, we can build our acceleration structure. This looks as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

ID3D12Resource* blasScratch; // Create as described in text.
ID3D12Resource* blasResult; // Create as described in text.

// Describe the bottom-Tevel acceleration structure.
D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC desc = {};
desc.Inputs = ASInputs; // From previous code snippet

desc.ScratchAccelerationStructureData =
blasScratch->GetGPUVirtualAddress(Q);

desc.DestAccelerationStructurebata =
blasResult->GetGPUVirtualAddress();

// Build the bottom-Tevel acceleration structure.
cmdList->BuildRaytracingAccelerationStructure(&desc, 0, nullptr);

Since the BLAS may build asynchronously on the GPU, wait until building completes
before using it. To do this, add a UAV barrier to the command list referencing the
BLAS result buffer.

34

INTRODUCTION TO DIRECTX RAYTRACING

3.8.1.2 TOP-LEVEL ACCELERATION STRUCTURE

3.8.2

Building the TLAS is similar to building bottom-level structures, with a few small
but important changes. Instead of providing geometry descriptions, each TLAS
contains instances of geometry from a BLAS. Each instance has a mask that
allows for rejecting entire instances on a per-ray basis, without any primitive
intersections, in conjunction with parameters to TraceRay() (see Section 3.5.1).
For example, an instance mask could disable shadowing on a per-object basis.
Instances can each uniquely transform the BLAS geometry. Additional flags allow
overrides to transparency, frontface winding, and culling. The following example
code defines TLAS instances:

// Describe the top-Tlevel acceleration structure instance(s).
D3D12_RAYTRACING_INSTANCE_DESC instances = {};

// Available in shaders

instances.InstanceID = 0;

// Choose hit group shader
instances.InstanceContributionToHitGroupIndex = 0;

// Bitwise AND with TraceRay() parameter
instances.InstanceMask = 1;

instances.Transform = &identityMatrix;

10 // Transparency? Culling?

11 1instances.Fl] ags = D3D12_RAYTRACING_INSTANCE_FLAG_NONE;

12 instances.AccelerationStructure = blasResult->GetGPUVirtualAddress();

0NV WN R

O

After creating instance descriptions, upload them in a GPU buffer. Reference this
buffer as a TLAS input when querying memory requirements. As with a BLAS, query
memory needs using GetRaytracingAccelerationStructurePrebuildinfo(),
but specify TLAS construction using type D3D12_RAYTRACING_ACCELERATION_
STRUCTURE_TYPE_TOP_LEVEL. Next, allocate scratch and result buffers and then
call BuildrRaytracingAccelerationStructure() to build the TLAS. As with

the bottom level, placing a UAV barrier on the top-level result buffer ensures the
acceleration structure build is complete before use.

ROOT SIGNATURES

Similar to function signatures in C++, DirectX 12 root signatures define the parameters
that are passed to shader programs. These parameters store information used to
locate resources (such as buffers, textures, or constants) that reside in GPU memory.
DXR root signatures derive from existing DirectX root signatures, with two notable
changes. First, ray tracing shaders may use either local or global root signatures. Local
root signatures pull data from the DXR shader table (see Section 3.10) and initialize the
D3D12_ROOT_SIGNATURE_DESC structure using the D3D12_ROOT_SIGNATURE_
FLAG_LOCAL_ROOT_SIGNATURE flag. This flag only applies to ray tracing, so avoid

35

RAY TRACING GEMS

3.8.3

36

combining it with other signature flags. Global root signatures source data from

DirectX command lists, require no special flags, and can be shared between graphics,

compute, and ray tracing. The distinction between local and global signatures is useful

to separate resources with varying update rates (e.g., per-primitive versus per-frame).

Second, all ray tracing shaders should use D3D12_SHADER_VISIBILITY_ALL for
the visibility parameter in D3D12_ROOT_PARAMETER, using either local or global
root signatures. As ray tracing root signatures share the command list state with

compute, local root arguments are always visible to all ray tracing shaders. It is not
possible to further narrow visibility.

SHADER COMPILATION

After building acceleration structures and defining root signatures, load and

compile shaders with the DirectX shader compiler (dxc) [7]. Initialize the compiler

using various helpers:

[y

O oo NO VT~ WN

dxc::DxcD11Support dxcHelper;

IDxcCompiler* compiler;

IDxcLibrary* Tibrary;
CComPtr<IDxcIncludeHandler> dxcIncludeHandler;
dxcHelper.Initialize(Q);
dxcHelper.CreateInstance(CLSID_DxcCompiler, &compiler);
dxcHelper.CreateInstance(CLSID_DxcLibrary, &library);
Tibrary->CreateIncludeHandler(&dxcIncludeHandler);

Next, use the IDxcLibrary class to load your shader source. This helper class
compiles the shader code; specify Tib_6_3 as the target profile. Compiled DirectX
intermediate language (DXIL) bytecode gets stored in a IDxcBlob, which we use
later to set up our ray tracing pipeline state object. As most applications use many

shaders, encapsulating compilation into a helper function is useful. We show such
a function and its usage in the following:

1 void Compileshader(IbxcLibrary* 1ib, IDxcCompiler* comp,

2

O 00N VT W

10
11
12
13
14

{

LPCWSTR fileName, IDxcBlob** blob)

UINT32 codePage(0);
IDXxcBlobEncoding* pShaderText(nullptr);
IDxcOperationResult* result;

// Load and encode the shader file.
Tib->CreateBlobFromFile(fileName, & codePage, & pShaderText);

// Compile shader; "main" is where execution starts.
comp->Compile(pShaderText, fileName, L"main", "1ib_6_3",
nullptr, 0, nullptr, 0, dxcIncludeHandler, &result);

3.9

INTRODUCTION TO DIRECTX RAYTRACING

15 // Get the shader bytecode result.
16 result->GetResult(blob);

17 3

18

19 // compiled shader DXIL bytecode

20 1DxcBlob *rgsBytecode, *missBytecode, *chsBytecode, *ahsBytecode;
21

22 // call our helper function to compile the ray tracing shaders.
23 compileshader(1ibrary, compiler, L"RayGen.hls1", &rgsBytecode);

24 compileshader(library, compiler, L"Miss.hls1", &missBytecode);

25 Compileshader(library, compiler, L"ClosestHit.h1s1", &chsBytecode);
26 Compileshader(library, compiler, L"AnyHit.h1s1", &ahsBytecode);

RAY TRACING PIPELINE STATE OBJECTS

As rays can intersect anything in a scene, applications must specify in advance
every shader that can execute. Similar to pipeline state objects (PS0s) in a raster
pipeline, the new ray tracing pipeline state objects (RTPSOs) provide the DXR
runtime with the full set of shaders and configuration information before execution.
This reduces driver complexity and enables shader scheduling optimizations.

To construct an RTPSO, initialize a D3D12_STATE_OBJECT_DESC. There are
two pipeline object types: a ray tracing pipeline (D3D12_STATE_OBJECT_TYPE_
RAYTRACING_PIPELINE) and a collection (D3D12_STATE_OBJECT_TYPE
_COLLECTION]. Collections are useful for parallel compilation of ray tracing
shaders across multiple threads.

DXR ID3D12StateObjects are composed of many subobjects defining the
pipeline’s shaders, root signatures, and configuration data. Construct those
using various D3D12_STATE_SUBOBJECTSs, and create objects by calling the
CreateStateObject() device function. Query properties of RTPSOs, such as
shader identifiers (see Section 3.10], using the ID3D12StateObjectProperties
type. An example of this process follows:

1 ID3D12StateObject* rtpso;

2 ID3D12StateObjectProperties* rtpsoInfo;

3

4 // Define state subobjects for shaders, root signatures,
5 // and configuration data.

6 vector<D3D12_STATE_SUBOBJECT> subobjects;

7//...

8

9 // Describe the ray tracing pipeline state object.

37

RAY TRACING GEMS

10 D3D12_STATE_OBJECT_DESC rtpsoDesc = {};

11 rtpsobDesc.Type = D3D12_STATE_OBJECT_TYPE_RAYTRACING_PIPELINE;
12 rtpsobesc.NumSubobjects = static_cast<UINT>(subobjects.size());
13 rtpsoDesc.pSubobjects = subobjects.data();

14

15 // Create the ray tracing pipeline state object.

16 dev->CreateStateObject(&rtpsoDesc, IID_PPV_ARGS(&rtpso));

17

18 // Get the ray tracing pipeline state object's properties.

19 rtpso->QueryInterface(IID_PPV_ARGS(&rtpsoInfo));

Aray tracing pipeline contains many different subobject types, including possible
subobjects for local and global root signatures, GPU node masks, shaders,
collections, shader configuration, and pipeline configuration. We cover only key
subobjects, but DXR provides lots of flexibility for more complex cases; please
consult the specification for comprehensive details.

Use D3D12_STATE_SUBOBJECT_TYPE_DXIL_LIBRARY to create subobjects for
shaders. Use the compiled bytecode IDxcBlob (from Section 3.8.3) to provide a
shader pointer and the compiled size. Use D3D12_EXPORT_DESC to specify the
shader’s entry point and a unique shader identifier. Importantly, shader entry points
must have unique names within an RTPSO. If multiple shaders reuse identical
function names, put the name into the ExportToRename field, and create a new
unique name in the Name field. The following shows an example:

// Describe the DXIL Library entry point and name.
D3D12_EXPORT_DESC rgsExportDesc = {};

// Unique name (to reference elsewhere)
rgsexportDesc.Name = L"Unique_RGS_Name";

// Entry point in HLSL shader source
rgseExportDesc.ExportToRename = L'"RayGen";
rgsexportDesc.Flags = D3D12_EXPORT_FLAG_NONE;

O 0O N VLA WN R

// Describe the DXIL Tibrary.

D3D12_DXIL_LIBRARY_DESC libDesc = {};
TibDesc.DXILLibrary.BytecodeLength = rgsBytecode->GetBuffersize();
TibDesc.DXILLibrary.pShaderBytecode = rgsBytecode->GetBufferpPointer();
TibDesc.NumExports = 1;

14 1ibDesc.pExports = &rgsExportDesc;

15

16 // Describe the ray generation shader state subobject.

17 D3D12_STATE_SUBOBJECT rgs = {};

18 rgs.Type = D3D12_STATE_SUBOBJECT_TYPE_DXIL_LIBRARY;

19 rgs.pbDesc = &libDesc;

Nl
W N R o

Create subobjects for miss, closest-hit, and any-hit shaders similarly. Groups of
intersection, any-hit, and closest-hit shaders form hit groups. These shaders get
executed once BVH traversal reaches a leaf node, depending on the primitives in

38

INTRODUCTION TO DIRECTX RAYTRACING

the leaf. We need to create subobjects for each such cluster. Unique shader names
specified in D3D12_EXPORT_DESC are used to “import” shaders into a hit group:

1 // Describe the hit group.

2 D3D12_HIT_GROUP_DESC hitGroupDesc = {};

3 hitGroupbesc.ClosestHitShaderImport = L"Unique_CHS_Name";
4 hitGroupDesc.AnyHitShaderImport = L"Unique_AHS_Name";

5 hitGroupDesc.IntersectionShaderImport = L"Unique_IS_Name";
6 hitGroupDesc.HitGroupExport = L"HitGroup_Name";

7

8 // Describe the hit group state subobject.

9 D3D12_STATE_SUBOBJECT hitGroup = {};
10 hitGroup.Type = D3D12_STATE_SUBOBJECT_TYPE_HIT_GROUP;

11 hitGroup.pbesc = &hitGroupDesc;

User-defined payload and attribute structures pass data between shaders.
Allocate runtime space for these structures using a D3D12_STATE_SUBOBJECT_
TYPE_RAYTRACING_SHADER_CONFIG subobject and D3D12_RAYTRACING_
SHADER_CONFIG to describe the sizes. Attribute structures have a relatively small
DirectX-defined maximum size that you cannot exceed (currently 32 bytes).

[

// Describe the shader configuration.
D3D12_RAYTRACING_SHADER_CONFIG shdrconfigbesc = {};
shdrconfigbesc.MaxPayloadSizeInBytes = sizeof(XMFLOAT4);
shdrconfigbesc.MaxAttributeSizeInBytes =
D3D12_RAYTRACING_MAX_ATTRIBUTE_SIZE_IN_BYTES;

// Create the shader configuration state subobject.
D3D12_STATE_SUBOBJECT shdrconfig = {};

shdrconfi g.Type = D3D12_STATE_SUBOBJECT_TYPE_RAYTRACING_SHADER_CONFIG;
shdrconfig.pbesc = &shdrconfigbesc;

O oo NOUVTL A WN

=
o

Configuring shaders requires more than adding a payload subobject to the pipeline
state. We must also attach the configuration subobject with associated shaders
(this allows payloads of multiple sizes within the same pipeline). After defining

a shader configuration, use a D3D12_STATE_SUBOBJECT_TYPE_SUBOBJECT_
TO_EXPORTS_ASSOCTIATION to specify which entry points from DXIL libraries to
associate with a configuration object. An example is shown in the following code:

// Create a list of shader entry point names that use the payload.
const WCHAR* shaderPayloadExports[] =
{ L"Unique_RGS_Name", L"HitGroup_Name" };

D3D12_SUBOBJECT_TO_EXPORTS_ASSOCIATION assocDesc = {};

assocbDesc.Numexports = _countof(shaderpPayloadExports);

assocDesc.pExports = shaderpPayloadExports;

assocDesc . pSubobjectToAssociate = &ubobjects[CONFIG_SUBOBJECT_INDEX];
10

1
2
3
4
5 // Describe the association between shaders and the payload.
6
7
8
9

39

RAY TRACING GEMS

40

11
12
13
14
15

Use D3

// Create the association state subobject.

D3D12_STATE_SUBOBJECT association = {};

association.Type =
D3D12_STATE_SUBOBJECT_TYPE_SUBOBJECT_TO_EXPORTS_ASSOCIATION;

association.pbesc = &assocDesc;

D12_STATE_SUBOBJECT_TYPE_LOCAL_ROOT_SIGNATURE typed subobjects

to specify local root signatures and provide a pointer to the serialized root
signature:

oV WN R

ID3D12RootSignature* localRootSignature;

// Create a state subobject for a local root signature.
D3D12_STATE_SUBOBJECT localRootSig = {};

TocalRootSig.Type = D3D12_STATE_SUBOBJECT_TYPE_LOCAL_ROOT_SIGNATURE;
TocalRootSig.pbesc = &localRootSignature;

As with shader configurations, we must associate local root signatures and their
shaders. Do this using the same pattern as the shader payload association above.

With a

D3D12_SUBOBJECT_TO_EXPORTS_ASSOCIATION subobject, provide a

shader name and the associated subobject pointer, in this case to a local root
signature. Global root signatures do not require association subobjects, so simply

create
and po

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

a D3D12_STATE_SUBOBJECT_TYPE_GLOBAL_ROOT_SIGNATURE subobject
int to the serialized global root signature.

// Create a 1list of shader export names that use the root signature.
const WCHAR* T1rseExports[] =
{ L"Unique_RGS_Name", L"Unique_Miss_Name", L"HitGroup_Name" };

// Describe the association of shaders and a Tocal root signature.

D3D12_SUBOBJECT_TO_EXPORTS_ASSOCIATION assocDesc = {};

assocDesc.NumExports = _countof(lrseExports);

assocDesc.pExports = TrsExports;

assocDesc.pSubobjectToAssociate =
&subobjects[ROOT_SIGNATURE_SUBOBJECT_INDEX];

// Create the association subobject.

D3D12_STATE_SUBOBJECT association = {};

association.Type =
D3D12_STATE_SUBOBJECT_TYPE_SUBOBJECT_TO_EXPORTS_ASSOCIATION;

association.pbesc = &assocDesc;

3.10

INTRODUCTION TO DIRECTX RAYTRACING

All executable ray tracing pipeline objects must include a pipeline configuration
subobject of type D3D12_STATE_SUBOBJECT_TYPE_RAYTRACING_PIPELINE
_CONFIG. Describe the configuration using a D3D12_RAYTRACING_PIPELINE
_CONFIG structure, which sets the maximum depth of recursive rays. Setting a
maximum recursion helps guarantee that execution will complete and provides
information to the driver for potential optimizations. Lower recursion limits can
improve performance. Here is an example:

// Describe the ray tracing pipeline configuration.
D3D12_RAYTRACING_PIPELINE_CONFIG pipelineConfigbesc = {};
pipelineConfigbDesc.MaxTraceRecursionDepth = 1;

// Create the ray tracing pipeline configuration state subobject.

D3D12_STATE_SUBOBJECT pipelineConfig = {};

pipelineConfig.Type =
D3D12_STATE_SUBOBJECT_TYPE_RAYTRACING_PIPELINE_CONFIG;

pipelineConfig.pDesc = &pipelineConfigDesc;

O 00N UL A WN R

After creating the ray tracing pipeline state object and all associated subobjects,
we can move on to building a shader table (Section 3.10). We will query the
ID3D12StateObjectProperties object for details needed to construct shader
table records.

SHADER TABLES

Shader tables are contiguous blocks of 64-byte aligned GPU memory containing ray
tracing shader data and scene resource bindings. Illustrated in Figure 3-3, shader
tables are filled with shader records. Shader records contain a unique shader
identifier and root arguments defined by the shader’s local root signature. Shader
identifiers are 32-byte chunks of data generated by an RTPSO and act as a pointer
to a shader or hit group. Since shader tables are simply GPU memory owned and
modified directly by the application, their layout and organization are incredibly
flexible. As a result, the organization shown in Figure 3-3 is just one of many ways
the records in a shader table may be arranged.

41

RAY TRACING GEMS

42

Shader Table

Ray Generation Miss .
Shader Records Shader Records Hit Group Shader Records
Shader Identifier @ > Hit Group
® Any-Hit Shader
g 2 coy Closest-Hit Shader
o s sl Int tion Shad
E § Constant Constant nfersection >hader
% 5 Constant Pad
S Descriptor Table
-4
Descriptor Table

Figure 3-3. A visualization of a DXR shader table and its shader records. Shader Records contain a
shader identifier and root arguments used to look up resources.

When spawning shaders during ray traversal, the shader table is consulted and
shader records are read to locate shader code and resources. For instance, if a
ray misses all geometry after traversing the acceleration structure, DirectX uses
the shader table to locate the shader to invoke. For miss shaders, the index is
computed as the address of the first miss shader plus the shader record stride
times the miss shader index. This is written as

&MIO] + (sizeof (MI0]) x /.,)- (1)

The miss shader index, /s, is provided as a parameter to TraceRay() in HLSL.

When selecting a shader record for a hit group [i.e., a combination of intersection,
closest-hit, and any-hit shaders), the computation is more complex:

&HIO] + (sizeof (HIOI) x (L, + Gy % Gig + Ly). (2)

ray

Here, I.., represents a ray type and is specified as part of TraceRay(). You can
have different shaders for different primitives in your BVH: G,, is an internally
defined geometry identifier, defined based on primitive order in the bottom-level
acceleration structure; G, is specified as a parameter to TraceRay() and in
simple cases represents the number of ray types; and I .., is a per-instance offset
defined in your top-level acceleration structure.

To create a shader table, reserve GPU memory and fill it with shader records. The
following example allocates space for three records: namely, a ray generation
shader and its local data, a miss shader, and a hit group with its local data.

When writing shader records to the table, query the shader’s identifier using the

3.1

INTRODUCTION TO DIRECTX RAYTRACING

GetShaderIdentifier() method of the ID3D12StateObjectProperties object.
Use the shader name specified during RTPSO creation as the key to retrieve the
shader identifier.

1 # define TO_DESC(X) (*reinterpret_cast<D3D12_GPU_DESCRIPTOR_HANDLE*>(X))
ID3D12Resource* shdrTable;
ID3D12DescriptorHeap* heap;

2

3

4

5 // Copy shader records to the shader table GPU buffer.

6 uint8_t* pData;

7 HRESULT hr = shdrTable->Map(0, nullptr, (void**)&pData);
8
9

// [Shader Record 0]
10 // set the ray generation shader identifier.
11 memcpy (pbata, rtpsoInfo->GetShaderIdentifier(L"Unique_RGS_Name™));

13 // Set the ray generation shader's data from the local root signature.
14 TO_DESC(pData + D3D12_SHADER_IDENTIFIER_SIZE_IN_BYTES) =

15 heap->GetGPUDescriptorHandleForHeapStart();

16 // [Shader Record 1]

17 // set the miss shader identifier (no local root arguments to set).
18 pbata += shaderRecordSize;

19 memcpy(pData, rtpsoInfo->GetShaderIdentifier(L"unique_Miss_Name'));

20

21 // [Shader Record 2]

22 // Set the closest -hit shader identifier.

23 pbata += shaderRecordSize;

24 memcpy(pData, rtpsoInfo->GetShaderIdentifier(L"HitGroup_Name"));

25

26 // Set the hit group's data from the local root signature.

27 TO_DESC(pbata + D3D12_SHADER_IDENTIFIER_SIZE_IN_BYTES) =

28 heap->GetGPUDescriptorHandleForHeapstart();

29 shdrTable->Unmap(0, nullptr);

Shader tables are stored in application-owned GPU memory, which provides lots of
flexibility. For instance, resource and shader updates can be optimized to touch as
few shader records as required, or even be double or triple buffered, based on the
application’s update strategy.

DISPATCHING RAYS

After completing the steps in Sections 3.8-3.10, we can finally trace rays. Since
shader tables have arbitrary, flexible layouts, we need to describe our table using
a D3D12_DISPATCH_RAYS_DESC before ray tracing begins. This structure points
to shader table GPU memory and specifies which ray generation shaders, miss
shaders, and hit groups to use. This information enables the DXR runtime to
compute shader table record indices (described in Sections 3.7.1 and 3.10J.

43

RAY TRACING GEMS

3.12

44

Next, specify the ray dispatch size. Similar to compute shaders, ray dispatches
use a three-dimensional grid. If dispatching rays in two dimensions (e.g., for

an image), ensure that the depth dimension is set to 1; default initialization sets
it to zero, which will spawn no work. After configuring shader table pointers

and dispatch dimensions, set the RTPSO with the new command list function
SetPipelineStatel(), and spawn rays using DispatchRays(). An example of
this is shown in the following:

[

// Describe the ray dispatch.
D3D12_DISPATCH_RAYS_DESC desc = {};

// Set ray generation table information.

desc.RayGenerationShaderRecord.StartAddress =
shdrTable->GetGPUVvirtualAddress();

desc.RayGenerationShaderrRecord.SizeInBytes = shaderRecordsize;

O oo NOUVTL A WN

// Set miss table information.

uint32_t missoffset = desc.RayGenerationShaderrRecord.SizeInBytes;

desc.MissShaderTable.StartAddress =
shdrTable->GetGPUVirtualAddress() + missoffset;

desc.MissShaderTable.SizeInBytes = shaderRecordSize;

desc.MissShaderTable.StrideInBytes = shaderRecordSize;

el el
ouvs WN R O

// Set hit group table information.

uint32_t hitoffset = missoffset + desc.MissShaderTable.SizeInBytes;
desc.HitGroupTable.StartAddress =

19 shdrTable->GetGPUvirtualAddress() + hitGroupTableoffset;
20 desc.HitGroupTable.SizeInBytes = shaderRecordsize;

21 desc.HitGroupTable.StrideInBytes = shaderRecordSize;

22

23 // set the ray dispatch dimensions.

24 desc.width = width;

25 desc.Height = height;

26 desc.Depth = 1;

o
o N

27
28 commandList->SetPipelineStatel(rtpso); // Set the RTPSO.
29 commandList->DispatchRays(&desc); // Dispatch rays!

DIGGING DEEPER AND ADDITIONAL RESOURCES

In this chapter, we have tried to provide an overview of the DirectX Raytracing
extensions and of the appropriate mental model behind them. We have, in
particular, focused on the basics of shader and host-side code that you need to get
up and running with DXR. Whether you write your own DirectX host-side code or
have some library (such as, for example, Falcor) provide it for you, from this point
on using ray tracing gets much easier: once the basic setup is done, adding more
ray tracing effects is often as simple as changing a few lines of shader code.

3.13

INTRODUCTION TO DIRECTX RAYTRACING

Obviously, our limited-length introductory chapter cannot go into greater depth.
We encourage you to explore various other resources that provide basic DirectX
infrastructure code, samples, best practices, and performance tips.

The SIGGRAPH 2018 course “Introduction to DirectX Raytracing” [12] is available
on YouTube and provides an in-depth DXR shader tutorial [11] using the Falcor
framework [2] to abstract low-level DirectX details, allowing you to focus on core
light transport details. These tutorials walk through basics such as opening a
window, simple G-buffer creation, and rendering using ambient occlusion as well
as advanced camera models for antialiasing and depth of field, up to full multiple-
bounce global illumination. Figure 3-4 shows several examples rendered with the
tutorial code.

Figure 3-4. Sample renderings using the SIGGRAPH 2018 course “Introduction to DirectX Raytracing”
tutorials.

Other useful tutorials include those focusing on lower-level host code, including
Marrs’ APl samples [3] that inspired the second half of this chapter, Microsoft's
set of introductory DXR samples [6], and the low-level samples from the Falcor
team [1]. Additionally, NVIDIA has a variety of resource, including additional code
samples and walkthroughs, on their developer blogs [8].

CONCLUSION

We have presented a basic overview of DirectX Raytracing that we hope helps
demystify the concepts necessary to put together a basic hardware-accelerated
ray tracer using DirectX, in addition to providing pointers to other resources to help
you get started.

The shader model resembles prior ray tracing APIs and generally maps cleanly
to pieces of a traditional CPU ray tracer. The host-side programming model may
initially appear complex and opaque; just remember that the design needs to

support arbitrary, massively parallel hardware that potentially spawns shaders

45

RAY TRACING GEMS

46

without the benefit of a continuous execution history along each ray. New DXR
pipeline state objects and shader tables help to specify data and shaders so such
GPUs can spawn work arbitrarily as rays traverse the scene.

Given the complexities of DirectX 12 and the flexibility of ray tracing, we were
unable to fully cover the API. Our goal was to provide enough information to get
started. As you target more complex renderings, you will need to refer to the DXR
specification or other documentation for further guidance. In particular, more
complex shader compilation, default pipeline subobject settings, system limits,
error handling, and tips for optimal performance all will require other references.

Our advice for getting starting: begin simply. Key problems revolve around
correctly setting up the ray tracing pipeline state objects and the shader table, and
these are much easier to debug with fewer, simple shaders. For example, basic
ray traced shadowing or ambient occlusion using a rasterized G-buffer for primary
visibility are good starting points.

With DirectX Raytracing and modern GPUs, shooting rays is faster than ever.
However, ray tracing is not free. For at least the near future, you can assume at
most a few rays per pixel. This means hybrid ray-raster algorithms, antialiasing,
denoising, and reconstruction will all be vital to achieve high-quality renderings
quickly. Other work in this book provides ideas on some of these topics, but many
problems remain unsolved.

REFERENCES

[11 Benty, N. DirectX Raytracing Tutorials. https://github.com/NVIDIAGameworks/
DxrTutorials, 2018. Accessed October 25, 2018.

[2] Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor
Rendering Framework. https://github.com/NVIDIAGameworks/Falcor, July 2017.

[31 Marrs, A. Introduction to DirectX Raytracing. https://github.com/acmarrs/IntroToDXR,
2018. Accessed October 25, 2018.

[4] Marschner, S., and Shirley, P. Fundamentals of Computer Graphics, fourth ed. CRC Press, 2015.

[51 Microsoft. Programming Guide and Reference for HLSL. https://docs.microsoft.com/
en-us/windows/desktop/direct3dhls1/dx-graphics-hls1. Accessed October 25,
2018.

[6] Microsoft. D3D12 Raytracing Samples. https://github.com/Microsoft/DirectX-
Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing, 2018.
Accessed October 25, 2018.

[71 Microsoft. DirectX Shader Compiler. https://github.com/Microsoft/
DirectXshadercCompiler, 2018. Accessed October 30, 2018.

https://github.com/NVIDIAGameWorks/DxrTutorials
https://github.com/NVIDIAGameWorks/DxrTutorials
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/acmarrs/IntroToDXR
https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl
https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing
https://github.com/Microsoft/DirectXShaderCompiler
https://github.com/Microsoft/DirectXShaderCompiler

[8]

[91

[10]
[11]

[12]

Qoo

INTRODUCTION TO DIRECTX RAYTRACING

NVIDIA. DirectX Raytracing Developer Blogs. https://devblogs.nvidia.com/tag/dxr/,
2018. Accessed October 25, 2018.

Shirley, P. Ray Tracing in One Weekend. Amazon Digital Services LLC, 2016. https://github.
com/petershirley/raytracinginoneweekend.

Suffern, K. Ray Tracing from the Ground Up. A K Peters, 2007.

Wyman, C. A Gentle Introduction To DirectX Raytracing. http://cwyman.org/code/
dxrTutors/dxr_tutors.md.html, 2018.

Wyman, C., Hargreaves, S., Shirley, P., and Barré-Brisebois, C. Introduction to DirectX Raytracing.
SIGGRAPH Courses, 2018. http://intro-to-dxr.cwyman.org, https://www.youtube.
com/watch?v=QlcuuepVNoY.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do

not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder.

47

https://devblogs.nvidia.com/tag/dxr
https://github.com/petershirley/raytracinginoneweekend
https://github.com/petershirley/raytracinginoneweekend
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
http://intro-to-dxr.cwyman.org
https://www.youtube.com/watch?v=Q1cuuepVNoY
https://www.youtube.com/watch?v=Q1cuuepVNoY
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 4

A Planetarium Dome Master Camera

John E. Stone
Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign

4.1

ABSTRACT

This chapter presents a camera implementation for high-quality interactive ray
tracing of planetarium dome master images using an azimuthal equidistant
projection. Ray tracing is aptly suited for implementing a wide variety of special
panoramic and stereoscopic projections without sacrificing image quality. This
camera implementation supports antialiasing, depth of field focal blur, and circular
stereoscopic projections, all effects that are difficult to produce with high quality
using conventional rasterization and image warping.

INTRODUCTION

Planetarium dome master images encode a 180° hemispherical field of view within
a black square, with an inscribed circular image containing the entire field of view
for projection onto a planetarium dome. Dome master images are produced using
a so-called azimuthal equidistant projection and closely match the output of a
real-world 180° equidistant fisheye lens, but without a real lens” imperfections
and optical aberrations. There are many ways of creating dome master projections
using rasterization and image warping techniques, but direct ray tracing has
particular advantages over other alternatives: uniform sample density in the

final dome master image (no samples are wasted in oversampled areas as when
warping cubic projections or many planar perspective projections [3]), support for
stereoscopic rendering, and support for depth of field on an intrinsically curved
focal surface. By integrating interactive progressive ray tracing of dome master
images within scientific visualization software, a much broader range of scientific
visualization material can be made available in public fulldome projection venues
(1,5, 7]

© NVIDIA 2019 49
E. Haines, T. Akenine-Moller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_4

RAY TRACING GEMS

4.2

50

METHODS

Dome master images are formed using an azimuthal equidistant projection, as
illustrated in Figure 4-1. The dome master image is normally computed within a
square viewport, rendered with a 180° field of view filling a circle inscribed in the
square viewport. The inscribed circle just touches the edges of the viewport,

with a black background everywhere else. The dome master projection may appear
roughly similar to an orthographic projection of the dome hemisphere as seen
from above or below, but with the critical difference that the spacing between
rings of latitude in the dome master image are uniform. This uniform spacing
conveniently allows a ray tracer camera to employ uniform sampling in the image
plane. Figure 4-2 shows the relationship between locations in the image plane
and their resulting ray directions on the dome hemisphere. Figure 4-3 shows an
example sequence of ray traced dome master images produced using the camera
model described here.

<>

Dome
Zenith

Figure 4-1. Dome master images use an azimuthal equidistant projection and appear similar to

a photograph from a 180° fisheye lens. Left: the dome master image has visibly uniform spacing

of latitude (circles] and longitude (lines] drawn at 10 intervals for the projected 180° field of view. A
pixel’s distance to the viewport center is proportional to the true angle in the center of the projection.
Right: the vector p in the dome master image plane, the azimuth direction components p, and p,,

the ray direction 6’ the angle 6 between the ray direction 5’ and the dome zenith, and the camera
orthogonal basis vectors ,?, }7, and Z.

4.2.1

A PLANETARIUM DOME MASTER CAMERA

Figure 4-2. A visual depiction relating the image plane (gray square with inscribed latitude/longitude
lines], dome hemisphere (blue], example p vectors [red] in the image plane, and corresponding ray
directions on the dome surface (green).

Figure 4-3. A sequence of dome master images interactively rendered in Visual Molecular Dynamics
(VMD] [4, 7] with OptiX. The sequence shows the camera flying into a photosynthetic vesicle found in a
purple bacterium. Since the structure is predominantly spherical, when the camera reaches the vesicle
center, the dome projection appears flat in the rightmost image.

COMPUTING RAY DIRECTIONS FROM VIEWPORT COORDINATES

The dome master camera computes the primary ray directions in a few key steps.
The maximum field of view angle from the center 6,,,, is computed as half of the

overall field of view, e.g., for the typical 180° field of view, 0. is 90° or g radians.

For the azimuthal equidistant projection, the distance from each pixel to the center
of the viewport is proportional to the true angle from the center of the projection
in radians. Dome master images are normally square, so for a 4096 x 4096 dome

image with a 180° field of view, we would have a radian/pixel scaling factor of 4(;;6
in both dimensions. For each pixel in the image plane, a distance is computed

51

52

RAY TRACING GEMS

between the pixel / and the midpoint M of the viewport and then multiplied by a
field of view radian/pixel scaling factor, yielding a two-dimensional vector in units
of radians, p = (p,, p,). The length ||p|| is then computed from p, and p,, the two
distance components from the viewport center, yielding 6, the true angle from the
dome zenith, in radians. The key steps for calculating 6 are then

p=(/-M) 40@6 (1)

and
o=llpl. (2)

For a dome master with a 180° field of view, the angle 8 is complementary to the
elevation angle of the ray computed from p.

It is important to note that @ is used both as a distance (from the center of the
viewport, scaled by radian/pixel) and as an angle (from the dome zenith). To
calculate the azimuthal direction components of the ray, we compute p from p by
dividing by 6, used here as a length. For 8 =0, the primary ray points at the zenith
of the dome, and the azimuth angle is undefined, so we protect against division

by zero in that case. If @ is greater than 6,,.,, then the pixel is outside of the field

of view of the dome and is colored black. For @ values between zero and 6,,.,, the
normalized ray direction in dome coordinates is

. in@ sing
n:[%, Pyg , coseJ. (3)

If orthogonal up (G) and right (F) directions are required for each ray, e.g., for
depth of field, they can be determined inexpensively using existing intermediate
values. The up direction can be computed by negating the ray direction’s derivative
as a function of 4, yielding a unit vector aligned with the vertical lines of longitude
pointing toward the dome zenith,

(= 0 -p,cosf@
u={ '0*205 , Pyg ,smH}. (4)

The right direction can be determined purely from the azimuth direction
components p, and p,, yielding a unit vector aligned with the horizontal latitude lines,

rcz[__'ay’ iy gj_ (5)
g 0

A PLANETARIUM DOME MASTER CAMERA

See Listing 4-1 for a minimalistic example computing the ray, up, and right

directions in the dome coordinate system. Finally, to convert the ray direction

from dome coordinates to world coordinates, we project its components onto the

camera’s orthogonal orientation basis vectors X, ¥, and Z by

a=(nx)“(+ny9+nzi). (6)

The same coordinate system conversion operations must also be performed on the
up and right vectors if they are required.

Listing 4-1. This short example function illustrates the key arithmetic required to compute a ray
direction from the floor of the dome hemisphere from a point in the image plane, given a user-specified
angular field of view (normally 180°] and viewport size. The dome angle from the center of the projection is
proportional to the distance from the center of the viewport to the specified point in the image plane. This
function is written for a dome hemisphere with the zenith in the positive z-direction. The ray direction
returned by this function must be projected onto camera basis vectors by the code calling this function

1 static

__device__ __inline__

2 int dome_ray(float fov,

3

O 00 N O v b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

float2 vp_sz,
float2 1,
float3 &raydir,
float3 &updir,
float3 & rightdir) {
float thetamax = 0.5f * fov;
float2 radperpix = fov / vp_sz;
float2 m = vp_sz * 0.5f;
float2 p = (i - m) * radperpix;
float theta = hypotf(p.x, p.y);
if (theta < thetamax) {
if (theta == 0) {

//
//
//
/7
/7
//
//
//
//
//
//

FoVv in radians

viewport size

pixel/point in image plane
returned ray direction

up, aligned w/ longitude Tine
right, aligned w/ Tatitude Tine
half-Fov in radians

calc radians/pixel in X/Y

calc viewport center/midpoint
calc azimuth, theta components
hypotf() ensures best accuracy

// At the dome center, azimuth is undefined and we must avoid
// division by zero, so we set the ray direction to the zenith

raydir = make_float3(0, 0, 1);

updir = make_float3(0, 1, 0);

rightdir = make_float3(1, 0, 0);
} else {

// Normal case: calc+combine azimuth and elevation components

float sintheta, costheta;

sincosf(theta, &sintheta, &costheta);

raydir =

make_float3(sintheta * p.x / theta,

sintheta * p.y / theta,
costheta);

updir =

make_fTloat3(-costheta * p.x / theta,

-costheta * p.y / theta,
sintheta);

rightdir =

make_float3(p.y / theta, -p.x / theta, 0);

53

RAY TRACING GEMS

4.2.2

54

33 return 1; // Point in image plane is within FoVv
34 }

35

36 raydir = make_float3(0, 0, 0); // outside of Fov
37 updir = rightdir = raydir;

38 return 0; // Point in image plane is outside FoV
39 3

CIRCULAR STEREOSCOPIC PROJECTION

The nonplanar panoramic nature of the dome projection focal surface presents

a special challenge for stereoscopic rendering. While non-stereoscopic dome
master images can be synthesized through multistage rendering, warping, and
filtering of many conventional perspective projections, high-quality stereoscopic
output essentially requires a separate stereoscopic camera calculation for every
sample in the image (and thus per ray, when ray tracing). This incurs significant
performance overheads and image quality trade-offs using existing rasterization
APIs, but it is ideally suited for interactive ray tracing. The mathematics naturally
extend the ray computations outlined in the previous section and introduce
insignificant performance cost relative to rendering a pair of monoscopic images.

To use stereoscopic circular projection [2, 6, 8] with a dome master camera, each
ray’s origin is shifted left or right by half of the interocular distance. The shift
occurs along the stereoscopic interocular axis, which lies perpendicular to both the
ray direction (d) and the audience’s local zenith or “up” direction (§). This accounts
for various tilted dome configurations, including those shown in Figure 4-4. The

shifted ray origin is computed by 0= 0+ e(&xd) , where e() is an eye-shift function
that applies the shift direction and scaling factors to correctly move the world-

space eye location, as shown in Figure 4-5. By computing the stereoscopic eye shift
independently for each ray, we obtain a circular stereoscopic projection.

Audience “up” fl Audience “up” (’i

. Dome Zenith
Dome Zenith

v
LLLLLLLL N

Figure 4-4. Relation between the dome zenith and audience “up” direction ¢A7 in both a traditional flat
planetarium dome (left] and a more modern dome theater with 30 tilt and stadium style seating [right).

A PLANETARIUM DOME MASTER CAMERA

Figure 4-5. /llustration of the circular stereoscopic projection technique and the effect of applying
an eye offset of half of the interocular distance to each ray’s origin, according to the ray direction. The
drawing shows the eye-shift offsets [dotted lines] for the left eye projection.

While circular stereoscopic projections are not entirely distortion-free, they are
“always correct where you are looking” [4]. Circular stereoscopic projections are
most correct when viewers look toward the horizon of the stereoscopic projection, but
not when looking near the audience zenith (q). Viewers could see backward-stereo
images when the region behind the stereoscopic polar axis is visible. To help mitigate
this problem, the stereoscopic eye separation can be modulated as a function of the
angle of elevation of d relative to the audience’s stereoscopic equator or horizon line.
By modulating the eye separation distance to zero at the audience’s zenith (thereby
degrading to a monoscopic projection), the propensity for backward-stereo viewing
can be largely eliminated. See Listing 4-2 for a simple but representative example
implementation.

Listing 4-2. A minimal eyeshift function implementation that handles both stereoscopic and
monoscopic projections.

1 static __host__ __device__ __inline__

2 float3 eyeshift(float3 ray_origin, // original non-stereo eye origin
3 float eyesep, // interocular dist, world coords
4 int whicheye, // left/right eye flag

5 float3 DcrossQ) { // ray dir x audience "up" dir

55

RAY TRACING GEMS

6 float shift = 0.0;

7 switch (whicheye) {

8 case LEFTEYE :

9 shift = -0.5f * eyesep; // shift ray origin left
10 break;
11
12 case RIGHTEYE:
13 shift = 0.5f * eyesep; // shift ray origin right
14 break;
15
16 case NOSTEREO:
17 default:
18 shift = 0.0; // monoscopic projection
19 break;
20 %
21
22 return ray_origin + shift * DcrossQ;
23 }

Stereoscopic dome master images are computed in a single pass, by rendering
both stereoscopic sub-images into the same output buffer in an over/under
layout with the left eye sub-image in the top half of a double-height framebuffer
and the right eye sub-image in the lower half. Figure 4-6 shows the over/under
vertically stacked stereoscopic framebuffer layout. This approach aggregates
the maximal amount of data-parallel ray tracing work in each frame, thereby
reducing APl overheads and increasing hardware scheduling efficiency. Existing
hardware-accelerated ray tracing frameworks lack efficient mechanisms to
perform progressive ray tracing on lists of cameras and output buffers, so the
packed stereo camera implementation makes it possible to much more easily
employ progressive rendering for interactive stereoscopic dome visualizations.
This is particularly beneficial when using video streaming techniques to view live
results from remotely located, cloud-hosted rendering engines. A key benefit

of the vertically stacked stereoscopic sub-image layout is that any image post-
processing or display software can trivially access the two stereoscopic sub-
images independently of each other with simple pointer offset arithmetic because
they are contiguous in memory. Dome master images and movies produced with
circular stereoscopic projections can often be imported directly into conventional
image and video editing software. Most basic editing and post-processing can be
performed using the same tools that one would use for conventional perspective
projections.

4.2.3

A PLANETARIUM DOME MASTER CAMERA

Figure 4-6. A vertically stacked stereoscopic pair of dome master images rendered in a single pass,

with depth of field applied on the spherical focal plane.

DEPTH OF FIELD

Depth of field focal blur can be implemented for the dome master projection

by computing basis vectors for a depth of field circle of confusion disk, and
subsequently using the basis vectors to compute jittered ray origin offsets and,
finally, updated ray directions. The circle of confusion basis vectors G and f are
best computed along with the ray direction d as they all depend on the same
intermediate values. Equations 4 and 5 describe the calculation of G and F,

57

RAY TRACING GEMS

4.2.4

4.3

58

respectively. Once the jittered depth of field ray origin is computed using G and
f, the ray direction must be updated. The updated ray direction is calculated by
subtracting the new ray origin from the point where the ray intersects the focal
surface (a sphere in this case) and normalizing the result. See Listing 4-3 for a
simple example implementation.

Listing 4-3. This short example function illustrates the key arithmetic required to compute the new
ray origin and direction when depth of field is used.

1 // CUDA device function for computing a new ray origin and

2 // ray direction, given the radius of the circle of confusion disk,
3 // orthogonal "up" and "right" basis vectors for each ray,

4 // focal plane/sphere distance, and a RNG/QRNG seed/state vector.

5 static __device__ __inline__

6 void dof_ray(const float3 &ray_org_orig, float3 &ray_org,
7 const float3 &ray_dir_orig, float3 &ray_dir,
8 const float3 &up, const float3 &right,

9 unsigned int &randseed) {
10 float3 focuspoint = ray_org_orig +
11 (ray_dir_orig * cam_dof_focal_dist);

12 float2 dofjxy;

13 jitter_disc2f(randseed, dofjxy, cam_dof_aperture_rad);
14 ray_org = ray_org_orig + dofjxy.x*right + dofjxy.y*up;
15 ray_dir = normalize(focuspoint - ray_org);

16 }

ANTIALIASING

Antialiasing of the dome master image is easily accomplished without any unusual
considerations, by jittering the viewport coordinates for successive samples. For
interactive ray tracing, a simple box-filtered average over samples is inexpensive
and easy to implement. Since samples outside of the field of view are colored black,
antialiasing samples also serve to provide a smooth edge on the circular image
produced in the dome master image.

PLANETARIUM DOME MASTER PROJECTION SAMPLE CODE

The example source code provided for this chapter is written for the NVIDIA OptiX
API, which uses the CUDA GPU programming language. Although the sample
source code is left abridged for simplicity, the key global-scope camera and scene
parameters are shown using small helper functions, e.g., for computing depth

of field, generating uniform random samples on a disk, and similar tasks. These
are provided so that the reader can more easily interpret and adapt the sample
implementation for their own needs.

A PLANETARIUM DOME MASTER CAMERA

The dome master camera is implemented as a templated camera function, to be
instantiated in several primary ray generation “programs” for the OptiX ray tracing
framework. The function accepts STEREO_ON and DOF_ON template parameters
that either enable or disable generation of a stereoscopic dome master image and
depth of field focal blur, respectively. By creating separate instantiations of the
camera function, arithmetic operations associated with disabled features are
eliminated, which is particularly beneficial for high-resolution interactive ray
tracing of complex scenes.

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health, under grant
P41-GM104601; the NCSA Advanced Visualization Laboratory; and the CADENS
project supported in part by NSF award ACI-1445176.

REFERENCES

[1] Borkiewicz, K., Christensen, A. J., and Stone, J. E. Communicating Science Through Visualization
in an Age of Alternative Facts. In ACM SIGGRAPH Courses (2017), pp. 8:1-8:204.

[2] Bourke, P. Synthetic Stereoscopic Panoramic Images. In Interactive Technologies and
Sociotechnical Systems, H. Zha, Z. Pan, H. Thwaites, A. Addison, and M. Forte, Eds., vol. 4270 of
Lecture Notes in Computer Science. Springer, 2006, pp. 147-155.

[3] Greene, N., and Heckbert, P. S. Creating Raster Omnimax Images from Multiple Perspective
Views Using the Elliptical Weighted Average Filter. [EEE Computer Graphics and Applications 6,
6 (June 1986), 21-27.

[4] Humphrey, W., Dalke, A., and Schulten, K. VMD—Visual Molecular Dynamics. Journal of Molecular
Graphics 14,1 (1996), 33-38.

[5] Sener, M., Stone, J. E., Barragan, A., Singharoy, A., Teo, I., Vandivort, K. L., Isralewitz, B., Liu,
B., Goh, B. C., Phillips, J. C., Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Visualization of
Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail. In International
Conference on High Performance Computing, Networking, Storage and Analysis (2014).

[6] Simon, A., Smith, R. C., and Pawlicki, R. R. Omnistereo for Panoramic Virtual Environment
Display Systems. In IEEE Virtual Reality (March 2004), pp. 67-73.

[7] Stone, J. E., Sener, M., Vandivort, K. L., Barragan, A., Singharoy, A., Teo, I., Ribeiro, J. V.,
Isralewitz, B., Liu, B., Goh, B. C., Phillips, J. C., MacGregor-Chatwin, C., Johnson, M. P.,
Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Atomic Detail Visualization of Photosynthetic
Membranes with GPU-Accelerated Ray Tracing. Parallel Computing 55 (2016), 17-27.

[8] Stone, J. E., Sherman, W. R., and Schulten, K. Immersive Molecular Visualization with
Omnidirectional Stereoscopic Ray Tracing and Remote Rendering. In /EEE International Parallel
and Distributed Processing Symposium Workshop (2016), pp. 1048-1057.

59

RAY TRACING GEMS

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

60

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 5

Computing Minima and Maxima
of Subarrays

Ingo Wald
NVIDIA

ABSTRACT

This chapter explores the following problem: given an array A of N numbers A;, how
can we efficiently query the minimal or maximal numbers in any sub-range of the
array? For example, “what is the minimum of the 8th to the 23rd elements?”

5.1 MOTIVATION

Unlike the topics of other chapters, this particular problem does not directly
relate to ray tracing in that it does not cover how to generate, trace, intersect, or
shade a ray. However, it is a problem occasionally encountered when ray tracing,
in particular when rendering volumetric data sets. Volumetric rendering of data
sets, whether structured or unstructured volumes, usually defines a scalar field,
z = flx), that typically is rendered with some form of ray marching. As with surface-
based data sets, the key to fast rendering is quickly determining which regions of
the volume are empty or less important, and speeding up computation by skipping
these regions, taking fewer samples, or using other approximations. This typically
involves building a spatial data structure that stores, per leaf, the minimal and
maximal values of the underlying scalar field.

In practice, this chapter’s problem arises because a scalar field is rarely rendered
directly—instead, the user interactively modifies some sort of transfer function t(z)
that specifies which color and opacity values map to different scalar field values
(e.g., to make muscle and skin transparent, and ligaments and bone opaque). In that
case, the extremal values of a region’s scalar field are not important for rendering.
Instead, we need the extremal values of the output of our transfer function applied to
our scalar field. In other words, assuming we represent our transfer function as an
array Ali], and the minimum and maximum of the scalar field map to array indices i,
and iy, respectively, what we want is the minimum and maximum of Ali] for i € [iy, ix].

At first glance, our problem looks similar to computing the sum for a subarray,
which can be done using summed-area tables (SATs) [3, 9]. However, min() and
max() are not invertible, so SATs will not work. The remainder of this chapter
discusses four different solutions to this problem, each having different trade-offs
regarding the memory required for precomputation and query time.

© NVIDIA 2019 61
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_5

RAY TRACING GEMS

5.2 NAIVE FULL TABLE LOOKUP

The naive solution precomputes an N x N sized table, M;, = min {A; i € [, k]}, and
simply looks up the desired value.

This solution is trivial and fast, providing a good “quick” solution (see, e.g.,
getMinMaxOpacityInRange() used in OSPRay [7]). It does, however, have one big
disadvantage: storage cost is quadratic (0(N?)) in array size N, so for nontrivial arrays
(e.g., Tk or 4k entries), this table can grow large. In addition to size, this table has to
be recomputed every time the transfer function changes, at a cost of at least O(N?).

Given this complexity, the full table method is good for small table sizes, but larger
arrays probably require a different solution.

53 THE SPARSE TABLE METHOD

A less known, but worthwhile, improvement upon the full table method is the
sparse table approach outlined in the online forum GeeksForGeeks [6]. We were
unaware of this method until performing our literature search (and we did not find
it discussed elsewhere); as such, we briefly describe it here.

The core idea of the sparse table method is that any n-element range [i. . j] can be
seen as the union of two (potentially overlapping] power-of-two sized ranges (the
first beginning at i, the other ending at j]. In that case, we do not actually have to
precompute the full table of all possible query ranges, but only those for power-of-
two sized queries; then we can look up the precomputed results for the two power-
of-two ranges and finally combine their results.

In a bit more detail, assume that we first precompute a lookup table L™ of all
possible queries that are 2' = 2 elements wide; i.e., we compute L([;) =min(4,, 4),

L(11) = min(/L, /42) , and so on. Similarly, we then compute table L® for all 2? = 4 wide
queries, L® for all 2° = 8 wide queries, etc.!

Once we have these logN tables L, for any query range [lo, hi] we can simply take
the following steps: First, compute the width of the query as n = (hi — lo + 1). Then,
compute the largest integer p for which 27 is still smaller than n. Then, the range
[lo, hi] can be seen as the union of the two ranges [lo, lo + 2° — 1] and [hi — 27 + 1, hi].
Since the queries for those have been precomputed in table L', we can simply look
up the values L(,Z) and £ , compute their minimum, and return the result. A

hi-2° +1
detailed illustration of this method is given in Figure 5-1.

'At least logically, we can also assume a table L% of 1 wide queries, but this is obviously identical to the input
array A and thus would not get stored.

62

COMPUTING MINIMA AND MAXIMA OF SUBARRAYS

L. 2 S B 1 1 1
2. 2 3

L. 2 4

O O
AU A1

Figure 5-1. Example of the sparse table method: from our 13-element input array All, we precompute
tables L', L, and L¥ containing all 2, 4, and 8 wide queries. Assuming that we query for the minimum
of the 7-element range [A,. . Agl, we can decompose this query into the union of two overlapping 4-wide
queries ([A,. . As] and [As. . Agl). These decomposed queries were precomputed in table L?. Thus, the

result is m/n(L(j), L(;)) = m/'n(3, 4) =3.

63

RAY TRACING GEMS

For a non-power-of-two input range the two sub-ranges will overlap, meaning
that some array elements will be accounted for twice. This makes the method
unsuitable for other sorts of reductions such as summation and multiplication;
for minimum and maximum, however, this double-counting does not change the
results. In terms of compute cost, the method is still O(1) because all queries can
be completed with exactly two lookups. In terms of memory cost, there are N — 1
entriesin L, N — 3in L@, etc., for a total storage cost of O(N logN)—which is a
great savings over the full table method’s O(N?).

5.4 THE (RECURSIVE) RANGE TREE METHOD

For ray tracing—where binary trees are, after all, a common occurrence—an
obvious solution to our problem is using some type of range tree, as introduced by
Bentley and Friedman [1, 2, 8. An excellent discussion of applying range trees to
our problem can be found online [4, 5.2

Arange tree is a binary tree that recursively splits the range of inputs and, for
each node, stores the corresponding subtree’s result. Each leaf corresponds to
exactly one array element; inner nodes have two children (one each for the lower
and upper halves of its input range) and store the minimum, maximum, sum,
product, etc. of the two children. An example of such a tree—for both minimum and
maximum queries—is given in Figure 5-2.

“Note that those articles use the term segment tree but describe the same data structure and algorithm. This
chapter adopts the range tree term used by both Bentley and Wikipedia.

64

Lo,

L,

L2,

L.

Lo,

L,

Lo,

L2,

L

Lo,

COMPUTING MINIMA AND MAXIMA OF SUBARRAYS

1.9
0
2.6 1.9
0 1
2.5 4.6 4.9 1.3

0 1 2 3

2.4 3.5 4.6 5..9 1.2
0 1 2 3 4
0000000000000
AU A1 A2 A3 AA A5 A6 A7 AB A? A10 A11 A'IZ
i\ 1.9
0

2.6 i 1.9 ;
0 o B
2.5 Cws (s
° 1 2 3

024 m h 22

Figure 5-2. /llustration of the recursive range tree method. Given input array A (top], we compute
a binary tree [middle] where each node stores the minimum and maximum of its corresponding leaf

nodes. Our recursive traversal for a query range (bottom) uses all three cases from the pseudocode:

gray nodes recurse into both children (case 3], green nodes with dark outlines get counted and
terminate (case 2], and blue nodes with dashed outlines lie outside the range [case 1].

Given such a range tree, querying over any range [lo, hi] requires finding the set of

nodes that exactly spans the input range. The following simple recursive algorithm
performs this query:

1
2
3
4

RangeTree: :query(node, [1o,hi]) {

if (node.indexRange does not overlap [lo,hi])
/* Case 1l: node completely outside query range -> 1ignore.
return { empty range }

*/

65

RAY TRACING GEMS

5.5

66

5 if (node.indexRange is inside [lo,hi])

6 /% Case 2: node completely inside query range -> use it. */
7 return node, valueRange

8 /* Case 3: partial overlap -> recurse into children, & merge. */
9 return merge(query(node.leftchild,[lo,hi]),
10 query(node.rightchild, [1o,hi])
11 }

Range trees require only linear storage and preprocessing time, which can be
integer factors less than the sparse table method. On the downside, queries no
longer occur in constant time, but instead have O(logN) complexity. Even worse,
recursive queries can incur relatively high “implementation constants” (especially
on SIMD or SPMD architectures], even with careful data layouts and when avoiding
pointer chasing.

ITERATIVE RANGE TREE QUERIES

In practice, the main cost of range tree queries lies not in their O(logN) complexity,
but rather in the high implementation constants for recursion. As such, an iterative
method would be highly preferable.

To derive such a method, we now look at a logical range tree from the bottom up,
as a successive merging of respectively next-finer levels. On the finest level L, we
have the Ny = N original array values, L(/,D) = A . On the next level, we compute the
min or max of each (complete] pair of values from the previous level, meaning there
are N, = [No/2] values of L(;) =f L(ZO/)L(ZU/)+1 ,where f could be min or max; level 2 has
N, = [N:/2] such merged pairs from L', and so on. For non-power-of-two arrays,
some of the N; can be odd, meaning some nodes will not have a parent; this is

somewhat counterintuitive, but for our traversal algorithm it will turn out just fine.

See Figure 5-3 for an illustration of the resulting data structure, which forms a
series of binary trees (one tree if N is a power of two, and more otherwise). A node
non any level L is the root of a binary tree representing all array values within this
(subltree.

COMPUTING MINIMA AND MAXIMA OF SUBARRAYS

v00000000000060
AU A1 A2 A3 AA AE A6 A7 AB A9 A1l] A11 A12

L),) 2.9
L2, 2.5 4.9 1.5
0 1 2

. (2.4 3.5 4.6 5..9 4.5 1.2

0 1 2 3 4 5
9000000000006

A, A A, A, A, A, A, A, A, A, A, A, A,
L), . 2.9

L2 25 [4.5] 1.5
. (2% G (i $§XD (EE 1.2
Nl
000000000006
A A A A A A A A A A A A

Figure 5-3. /llustration of our iterative range tree: given an array of 13 inputs, we iteratively merge
pairs to successively smaller levels, forming a total of [in this example] three binary trees. For a sample
query [lo = 2, hi = 8], we must find the three nodes L(;) L(,l), and L(,Z) marked with dark solid outlines.

Our algorithm starts with lo = 2 and hi = 8 on L"; it determines that hi is even and should be counted
[solid circle), and that lo is odd and thus should not (dashed circle]. The next step updates lo and hi to
lo =1 and hi =3 (now in L] and correctly counts L(,? (solid outline) because lo is odd, while skipping
over L(,:,) because hi is not even (dashed outline). It then does the same for lo = 1 and hi = 1 on L, after
which it steps to lo =1, hi = 0 on L™ and then terminates.

Given a query range [lo, hi], let us look at all subtrees ng, ny, n,, ... whose children
fall completely within the query but are not part of a larger tree in the range
(circled in bold in Figure 5-3). Clearly, those are the nodes we want to consider—so
we need to find an efficient method of traversing those nodes.

To do this, consider the node ranges that our query range spans on each level ; let
us call these [lo;. . hi,]. Now, let us first look at lo,. By construction, we know that lo;
can be the root of a subtree only if its index is odd (otherwise, it is another subtree’s
left child). Whether odd or even, the leftmost index in the next coarser level can be

67

RAY TRACING GEMS

computed as o, , 1 = [lo, + 1)/2.% Similar arguments can be made for the right-side
index hi;, except that “odd” and “even” get exchanged and that the next index gets
computed as hi;,; = (hi + 1)/2 = 1 (or, in signed integer arithmetic, as (hi — 1) > 1).
This iterative coarsening continues until lo, becomes larger than hi, at which point
we have reached the first level that no longer contains any subtrees.* With these
considerations, we end up with a simple algorithm for iterating through subtrees:

1 Iterate(lo,hi) {

2 Range result = { empty range }

3 L = finest level

4 while (1o <= hi) {

5 if (1o is odd) result = merge(result,L[T1o])
6 if (hi is even) result = merge(result,L[hi])
7 L = next finer Level;

8 To = (lo+1)>>1

9 hi = (hi-1)>>1 /* Needs signed arithmetic, else (hi+l)/2-1 */
10 return result

11 }

12 }

As noted in the pseudocode, care must be taken to properly handle computation
of the high index when hi = 0, but following the pseudocode takes care of this. As
in classical range trees, this iterative method accounts for each value in the input
range exactly once and could thus be used for queries other than minimum and
maximum.

With regard to memory layout, we have logically explained our algorithm using a
sequence of arrays (one per level). In practice, we can easily store all levelsin a
single array that first contains all N, values for L;, then all values for L,, and so on.
Since we always traverse from the finest to successively coarser levels, we can
even compute level offsets implicitly, yielding a simple—and equally tight—inner
loop. See our reference implementation online, at http://gitlab.com/ingowald/
rtgem-minmax.

Here is a brief proof. If lo, was a root node in L then it was odd, so this moves it to the next subtree on the right
side; if not, it moves up to lo.'s parent, which is still the leftmost subtree. Either way the index can be computed
as lo, . = (lo, +1)/2.

“The case where lo, and hi_ meet at exactly the same node is fine: the value is either odd (and counted on the low
side) or even (and counted on the high side], and the next step will terminate.

68

http://gitlab.com/ingowald/rtgem-minmax
http://gitlab.com/ingowald/rtgem-minmax

9.6

5.7

COMPUTING MINIMA AND MAXIMA OF SUBARRAYS

RESULTS

Theoretically, our iterative method has the same storage complexity, O(N], and
computational complexity, O(logN]), as the classical range tree method. However,
its memory layout is much simpler, and the time constant for querying is
significantly lower than in any recursive implementation. In fact, with our sample
code this iterative version is almost as fast as the 0(1) sparse table method,
except for tables with at least hundreds of thousands of elements—while using
significantly less memory.

For example, using an array with 4k elements and randomly chosen query
endpoints lo and hi, the iterative method is only about 5% slower than the sparse
table method, at 10x lower memory usage. For a larger 100k-element table, the
speed difference increases to roughly 30%, but at 15x; lower memory usage. While
already a interesting trade-off, it is worth noting that randomly chosen query
endpoints are close to the iterative method’s worst case: since iteration count is
logarithmic in |hi-lo|, “narrower” queries actually run faster than very wide ones
performed by uniformly chosen lo and hi values. For example, if we limit the query
values to |hi-lo] < \/X/ the iterative method on the 100k-element array changes
from 30% slower to 15% faster than the sparse table method (at 15x less memory)

SUMMARY

In this chapter, we have summarized four methods for computing the minima and
maxima for any sub-range of an array of numbers. The naive full table method is
the easiest to implement and is fast in query—but suffers from 0(N?) storage and
recomputation cost, which limit its usefulness. The sparse table method is slightly
more complex but significantly reduces the memory overhead, while retaining

the O(1) query complexity. The recursive range tree method reduces this memory
overhead even more (to O(N)), but at the cost of a significantly higher query
complexity—not only theoretically (at O(logN]) but also in actual implementation
constants. Finally, our iterative range tree retains the low memory overhead of
range trees, uses a simpler memory layout, and converts the recursive query into
a tight iterative loop. Though asymptotically still O(logN], in practice its queries
perform similar to the 0(1) sparse table method, at lower memory consumption.
Overall, this makes the iterative method our favorite, in particular since both
precomputation code and query code are surprisingly simple.

Sample code for the sparse table and the iterative range tree methods are
available online, at https://gitlab.com/ingowald/rtgem-minmax.

69

https://gitlab.com/ingowald/rtgem-minmax

RAY TRACING GEMS

REFERENCES

[1] Bentley, J. L., and Friedman, J. H. A Survey of Algorithms and Data Structures for Range
Searching. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-2189.pdf,
1978.

[2] Bentley, J. L., and Friedman, J. H. Algorithms and Data Structures for Range Searching. ACM
Computing Surveys 11, 4 (1979), 397-409.

[31 Crow, F. Summed-Area Tables for Texture Mapping. Computer Graphics (SIGGRAPH) 18, 3 (1984),
207—212.

[4] GeeksForGeeks. Min-Max Range Queries in Array. https://www.geeksforgeeks.org/
min-max-range-queries-array/. Last accessed December 7, 2018.

[51 GeeksForGeeks. Segment Tree: Set 2 (Range Minimum Query). https://www.
geeksforgeeks.org/segment-tree-set-1-range-minimum-query/. Last accessed
December 7, 2018.

[6] GeeksForGeeks. Sparse Table. https://www.geeksforgeeks.org/sparse-table/. Last
accessed December 7, 2018.

[71 Wald, |., Johnson, G. P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J. L., Guenther, J.,
and Navratil, P. OSPRay—A CPU Ray Tracing Framework for Scientific Visualization. [EEE
Transactions on Visualization 23, 1 (2017), 931-940.

[8] Wikipedia. Range Tree. https://en.wikipedia.org/wiki/Range_tree. Last accessed
December 7, 2018.

[91 Wikipedia. Summed-Area Table. https://en.wikipedia.org/wiki/Summed-area_table.
Last accessed December 7, 2018.

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

70

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-2189.pdf
https://www.geeksforgeeks.org/min-max-range-queries-array/
https://www.geeksforgeeks.org/min-max-range-queries-array/
https://www.geeksforgeeks.org/segment-tree-set-1-range-minimum-query/
https://www.geeksforgeeks.org/segment-tree-set-1-range-minimum-query/
https://www.geeksforgeeks.org/sparse-table/
https://en.wikipedia.org/wiki/Range_tree
https://en.wikipedia.org/wiki/Summed-area_table
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

PART Il

INTERSECTIONS
\ND EFFICIENCY

PART Il

Intersections and Efficiency

Ray tracing has many useful properties, but eventually, the two by which people
seem most captivated are its elegance and simplicity. New rendering algorithms
and effects can be added by just tracing some rays. New surface primitives can
be added by simply specifying their bounding box and intersection programs.
Parallelism is often “embarrassingly” simple to achieve.

As with everything else, all of this is profoundly true—until it is not. Any one of the
above properties is true in principle, but only until one hits “the good, the bad, and
the ugly” cases—namely, those where the default find-the-intersection interface is
no longer sufficient; where limited floating precision messes up nice mathematical
solutions; where “edge cases” such as multiple coplanar surfaces, “unreasonably”
small or faraway geometry, or grossly uneven costs per pixel rear their ugly heads.
Such challenges are tempting to gloss over as pathological cases, but in practice,
they can only be ignored at one’s peril.

Chapter 6, “A Fast and Robust Method for Avoiding Self-Intersection,” discusses
how rays originating at a surface intersect the surface itself. It presents a solution
that is easy to implement, yet battle-proven in a production ray tracer.

Chapter 7, “Precision Improvements for Ray/Sphere Intersection,” looks at how
quickly limited floating-point precision can interfere with the root finding done in
ray/sphere intersection and how this can be fixed in a numerically stable way that
can also carry beyond spheres.

Chapter 8, “Cool Patches: A Geometric Approach to Ray/Bilinear Patch
Intersections,” describes a new geometric primitive that allows for easy handling of
arbitrary (i.e., nonplanar) quadrilateral patches without the need to split them into
two triangles, while remaining both numerically robust and fast.

Chapter 9, “Multi-Hit Ray Tracing in DXR,” looks at the case where applications
need to efficiently and robustly find not just “the”—but rather multiple—successive
intersections along a ray, as well as looks into how to add that functionality on top
of the existing DXR API.

75

76

Finally, Chapter 10, “A Simple Load-Balancing Scheme with High Scaling
Efficiency,” proposes a straightforward yet effective method of achieving nicely
work-balanced image-space parallelization. It works even in the presence of wildly
differing costs per pixel, for which naive approaches tend to break down.

Having had to deal with literally every one of these chapters’ topics in the past, | am
particularly excited to present this part’s selection of chapters. | do hope that they
will provide insight—and ideally, reference solutions—for those ray tracers that are
yet to be written.

Ingo Wald

CHAPTER 6

A Fast and Robust Method for Avoiding
Self-Intersection

Carsten Wachter and Nikolaus Binder
NVIDIA

ABSTRACT

We present a solution to avoid self-intersections in ray tracing that is more robust
than current common practices while introducing minimal overhead and requiring
no parameter tweaking.

6.1 INTRODUCTION

Ray and path tracing simulations construct light paths by starting at the camera or
the light sources and intersecting rays with the scene geometry. As objects are hit,
new rays are generated on these surfaces to continue the paths. In theory, these
new rays will not yield an intersection with the same surface again, as intersections
at a distance of zero are excluded by the intersection algorithm. In practice,
however, the finite floating-point precision used in the actual implementation often
leads to false positive results, known as self-intersections, creating artifacts such
as shadow acne, where the surface sometimes improperly shadows itself.

The most widespread solutions to work around the issue are not robust enough
to handle a variety of common production content and may even require manual
parameter tweaking on a per-scene basis. Alternatively, a thorough numerical
analysis of the source of the numerical imprecision allows for robust handling.
However, this comes with a considerable performance overhead and requires
source access to the underlying implementation of the ray/surface intersection
routine, which is not possible in some software APls and especially not with
hardware-accelerated technology, e.g., NVIDIA RTX.

In this chapter we present a method that is reasonably robust, does not require any
parameter tweaking, and at the same time introduces minimal overhead, making it
suitable for real-time applications as well as offline rendering.

© NVIDIA 2019 77
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_6

RAY TRACING GEMS

6.2

6.2.1

78

METHOD

Computing a new ray origin in a more robust way consists of two steps. First, we
compute the intersection point from the ray tracing result so that it is as close to
the surface as possible, given the underlying floating-point mathematics. Second,
as we generate the next ray to continue the path, we must take steps to avoid
having it intersect the same surface again. Section 6.2.2 explains common pitfalls
with existing methods, as well as presents our solution to the problem.

CALCULATING THE INTERSECTION POINT ON THE SURFACE

Calculating the origin of the next ray along the path usually suffers from finite
precision. While the different ways of calculating the intersection point are
mathematically identical, in practice, the choice of the most appropriate method
is crucial, as it directly affects the magnitude of the resulting numerical error.
Furthermore, each method comes with its own set of trade-offs.

Computing such a point is commonly done by inserting the hit distance into the
ray equation. See Figure 6-1. We strongly advise against this procedure, as the
resulting new origin may be far off the plane of the surface. This is, in particular,
true for intersections that are far away from the ray origin: due to the exponential
scale of floating-point numbers, the gaps between representable values grow
exponentially with intersection distance.

Figure 6-1. Calculating the ray/surface intersection point X by inserting the intersection distance t
into the ray equation. In this case, any error introduced through insufficient precision for t will mostly
shift the computed intersection point X along the ray direction d—and, typically, away from the plane
of the triangle.

6.2.2

A FAST AND ROBUST METHOD FOR AVOIDING SELF-INTERSECTION

By instead calculating the previous ray’s intersection point based on surface
parameterization (e.g., using the barycentric coordinates computed during ray/
primitive intersection], the next ray’s origin can be placed as close as possible

to the surface. See Figure 6-2. While again finite precision computations result

in some amount of error, when using the surface parameterization this error is
less problematic: when using the hit distance, any error introduced through finite
precision shifts the computed intersection point mostly along the line of the original
ray, which is often away from the surface (and consequently bad for avoiding self-
intersections, as some points will end up in front of and some behind the surface).
In contrast, when using the surface parameterization, any computational error
shifts the computed intersection point mostly along the surface—meaning that the
next ray’s origin may start slightly off the line of the preceding ray, but it is always
as close as possible to the original surface. Using the surface parameterization
also guarantees consistency between the new origin and surface properties, such
as interpolated shading normals and texture coordinates, which usually depend on
the surface parameterization.

O

Figure 6-2. Calculating the intersection X with barycentric coordinates [a, . In this case, the finite
precision of (a,] means that the computed intersection point X may no longer lie exactly on the ray—
but it will always be very close to the surface.

AVOIDING SELF-INTERSECTION

Placing the origin of the new ray “exactly” on the surface usually still results in
self-intersection [4], as the computed distance to the surface is not necessarily
equal to zero. Therefore, excluding intersections at zero distance is not sufficient,
and self-intersection must be explicitly avoided. The following subsections present
an overview of commonly used workarounds and demonstrate the failure cases for
each scheme. Our suggested method is described in Section 6.2.2.4.

79

RAY TRACING GEMS

6.2.2.1 EXCLUSION USING THE PRIMITIVE IDENTIFIER

Self-intersection can often be avoided by explicitly excluding the same primitive
from intersection using its identifier. While this method is parameter free, is

scale invariant, and does not skip over nearby geometry, it suffers from two major
problems. First, intersections on shared edges or coplanar geometry, as well as
new rays at grazing angles, still cause self-intersection (Figures 6-3 and 6-4).
Even if adjacency data is available, it would be necessary to distinguish between
neighboring surfaces that form concave or convex shapes. Second, duplicate or
overlapping geometry cannot be handled. Still, some production renderers use the
identifier test as one part of their solution to handle self-intersections [2].

X ID 1
ID 0 i

Figure 6-3. Rejecting the surface whose primitive identifier matches the ID of the primitive on which
the previous intersection X was found can fail for the next intersection X' if the previous intersection
X was on, or very close to, a shared edge. In this example X was found on the primitive with ID 0.
Due to finite precision a false next intersection X' will be detected on the primitive with ID 1 and is
considered valid since the IDs mismatch.

Figure 6-4. Rejection with primitive IDs also fails on flat or slightly convex geometry for intersections
anywhere on the primitive if the next ray exists at a grazing angle. Again, the distance § of the false
intersection X' to the surface of the other primitive gets arbitrarily close to zero, the primitive IDs
mismatch, and hence this false intersection is considered valid.

Furthermore, note that exclusion using the primitive identifier is applicable to only
planar surfaces, as nonplanar surfaces can exhibit valid self-intersection.

80

A FAST AND ROBUST METHOD FOR AVOIDING SELF-INTERSECTION

6.2.2.2 LIMITING THE RAY INTERVAL

Instead of only excluding intersections at zero distance, one can set the lower
bound for the allowed interval of distances to a small value e: t.;, = € > 0. While
there is no resulting performance overhead, the method is extremely fragile as
the value of ¢ itself is scene-dependent and will fail for grazing angles, resulting in
self-intersection (Figure 6-5) or skipping of nearby surfaces (Figure 6-6).

Figure 6-5. Setting t,,;, to a small value ¢ > 0 does not robustly avoid self-intersection, especially for
rays exiting at grazing angles. In the example the distance t along the ray is greater than t, but the

distance & of the (false) next intersection X' to the surface is zero due to finite precision.

S

Figure 6-6. Skipping over a valid intersection X' due to setting t,,i, = € > 0 is especially visible in
corners due to paths being pushed into or out of closed objects.

81

RAY TRACING GEMS

6.2.2.3

6.2.2.4

82

OFFSETTING ALONG THE SHADING NORMAL OR THE OLD RAY DIRECTION

Offsetting the ray origin along the shading normal is similar to setting the lower
bound of a ray t.;, = ¢ > 0 and features the same failure cases, as this vector is
not necessarily perpendicular to the surface (due to interpolation or variation
computed from bump or normal maps).

Shifting the new ray origin along the old ray direction will again suffer from similar
issues.

ADAPTIVE OFFSETTING ALONG THE GEOMETRIC NORMAL

As could be seen in the previous subsections, only the geometric normal, being
orthogonal to the surface by design, can feature the smallest offset, dependent
on the distance to the intersection point, to escape self-intersection while not
introducing any of the mentioned shortcomings. The next step will focus on how to
compute the offset to place the ray origin along it.

Using any offset of fixed length ¢ is not scale invariant, and thus not parameter
free, and will also not work for intersections at varying magnitudes of distance.
Therefore, analyzing the error of the floating-point calculations to compute the
intersection point using barycentric coordinates reveals that the distance of the
intersection to the plane of the surface is proportional to the distance from the
origin (0,0,0). At the same time the size of the surface also influences the error and
even becomes dominant for triangles very close to the origin (0,0,0). Using only
normalized ray directions removes the additional impact of the length of the ray on
the numerical error. The experimental results in Figure 6-7 for random triangles
illustrate this behavior: We calculate the average and maximum distance of the
computed intersection point to 10 million triangles with edge lengths between 2
and 2%2. As the resulting point can be located on either side of the actual plane, a
robust offset needs to be at least as large as the maximum distance.

A FAST AND ROBUST METHOD FOR AVOIDING SELF-INTERSECTION

107
° Average Distance
gﬂ ——— Maximum Distance
©
-
= 10+
o
=
c
o
=
O
¢ 7
v o10
(7]
)
£
b
o
%<}
@ 1070
[¥]
c
©
—
0
[m]
10-13

10 10+ 102 100 102 10¢
Distance of Intersection to Origin

Figure 6-7. The experimental analysis of the average and maximum distance of a point placed on a
triangle using barycentric coordinates to its plane for 10 million random triangles at different distances
to the origin provides the scale for the constants used in Listing 6-1.

To handle the varying distance of the intersection point implicitly, we use integer
mathematics on the floating-point number integer representation when offsetting
the ray origin along the direction of the geometric normal. This results in the offset
becoming scale-invariant and thus prevents self-intersections at distances of
different magnitudes.

To handle surfaces/components of the intersection point that are nearly at the
origin/zero, we must approach each one separately. The floating-point exponent

of the ray direction components will differ greatly from the exponents of the
components of the intersection point; therefore, offsetting using the fixed integer ¢
is not a viable option for dealing with the numerical error that can arise during the
ray/plane intersection calculations. Thus, a tiny constant floating-point value ¢ is
used to handle this special case to avoid introducing an additional costly fallback.
The resulting source code is shown in Listing 6-1. The provided constants were
chosen according to Figure 6-7 and include a small margin of safety to handle more
extreme cases that were not included in the experiment.

83

RAY TRACING GEMS

6.3

84

Listing 6-1. /mplementation of our method as described in Section 6.2.2.4.

1 constexpr float origin() { return 1.0f / 32.0f; }
2 constexpr float float_scale() { return 1.0f / 65536.0f; }
3 constexpr float int_scale() { return 256.0f; }

4

5 // Normal points outward for rays exiting the surface, else is flipped.

6 float3 offset_ray(const float3 p, const float3 n)

7 {

8 1int3 of_i(int_scale() * n.x, int_scale() * n.y, int_scale() * n.z);

9
10 float3 p_i(
11 int_as_float(float_as_int(p.x)+((p.x < 0) ? -of_i.x : of_i.x)),
12 int_as_float(float_as_int(p.y)+((p.y < 0) ? -of_i.y : of_i.y)),
13 int_as_float(float_as_int(p.z)+((p.z < 0) ? -of_i.z : of_i.2)));
14
15 return float3(fabsf(p.x) < origin() ? p.x+float_scale()*n.x : p_i.X,
16 fabsf(p.y) < origin(Q) ? p.y+float_scaleQ*n.y : p_i.y,
17 fabsf(p.z) < origin() ? p.z+float_scaleQ*n.z : p_i.z);
18 }

Even with our method, there still exist situations in which shifting along the
geometric normal skips over a surface. An example of such a situation is the
crevice shown in Figure 6-8. Similar failure cases can certainly be constructed
and do sometimes happen in practice. However, they are significantly less likely to
occur than the failure cases for the simpler approaches discussed previously.

t min

t min

Figure 6-8. Very fine geometric detail such as a deep, thin crevice cannot be robustly handled by any
of the listed methods. In this example the initial intersection X is slightly below the actual surface.
Left: limiting the ray interval can help to avoid self-intersection for some rays (upper ray), but may also
fail for others (lower ray). Right: offsetting along the surface normal may move the origin of the next
ray X' into the same or neighboring object.

CONCLUSION

The suggested two-step procedure for calculating a robust origin for the next ray
along a path first sets an initial position as close as possible to the plane of the
surface using the surface parameterization. It then shifts the intersection away from
the surface by applying a scale-invariant offset to the position, along the geometric
normal. Our extensive evaluation shows that this method is sufficiently robust in
practice and is simple to include in any existing renderer. It has been part of the Iray
rendering system for more than a decade [1] to avoid self-intersection for triangles.

A FAST AND ROBUST METHOD FOR AVOIDING SELF-INTERSECTION

The remaining failure cases are rare special cases, but note that huge translation or
scaling values in instancing transformations will result in larger offset values as well
(for an analysis, see Physically Based Rendering (third edition) [3]). This phenomenon
leads to a general quality issue because all lighting, direct and indirect, will be
noticeably “offset” as well, which becomes apparent especially in nearby reflections,
even leading to artifacts. To tackle this problem, we recommend storing all meshes
in world units centered around the origin (0,0,0). Further, one should extract
translation and scaling from the camera transformation and instead include them

in the object instancing matrices. Doing so effectively moves all calculations closer
to the origin (0,0,0). This procedure allows our method to work with the presented
implementation and, in addition, avoids rendering artifacts due to large offsets.

As excluding flat primitives using the primitive identifier from the previously found
intersection does not result in false negatives, this can in addition be included as a fast
and trivial test, often preventing an unnecessary surface intersection in the first place.

REFERENCES

[1] Keller, A., Wachter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndorfer, J., and Kettner, L.

The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

[2] Pharr, M. Special Issue On Production Rendering and Regular Papers. ACM Transactions on
Graphics 37, 3 (2018).

[31 Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation, third ed. Morgan Kaufmann, 2016.

[4] Woo, A., Pearce, A., and Ouellette, M. It's Really Not a Rendering Bug, You See... [EEE Computer
Graphics & Applications 16, 5 (Sept. 1996), 21-25.

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do

not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

85

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 7

Precision Improvements for
Ray/Sphere Intersection

Eric Haines," Johannes Glinther,? and Tomas Akenine-Méller’
'NVIDIA
?Intel

ABSTRACT

The traditional quadratic formula is often presented as the way to compute the
intersection of a ray with a sphere. While mathematically correct, this factorization
can be numerically unstable when using floating-point arithmetic. We give two
little-known reformulations and show how each can improve precision.

7. BASIC RAY/SPHERE INTERSECTION

One of the simplest objects to ray trace is the sphere—no wonder that many early
ray traced images featured spheres. See Figure 7-1.

R
N
5 T

-

3%
2%
=S
Exs
£3
=
3
£
TF
4
=
I

A
e
¥

Figure 7-1. A fractal sphereflake test scene. The ground plane is actually a large sphere. The scene
contains 48 million spheres, most of subpixel size [9].

© NVIDIA 2019 87
E. Haines, T. Akenine-Maller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_7

RAY TRACING GEMS

A sphere can be defined by a center G and a radius r. For all points P at the surface
of the sphere, the following equation holds:

(P-G)-(P-G)=r. (1)

To find the intersection between the sphere and the ray we can replace P by
R(t) = O + td (see Chapter 2]. After simplification and using f = 0 — G, we arrive at

(d-d)¢* +2(f-d)t+f-f =2 = at’+bt+c=0. (2)
T ‘

The solutions to this second-degree polynomial are

_ —bx4b*-hac 3]

o 2a

If the discriminant A = b? — 4ac < 0, the ray misses the sphere, and if A =0, then the
ray just touches the sphere, i.e., both intersections are the same. Otherwise, there
will be two t-values that correspond to different intersection points; see Figure 7-2.

Figure 7-2. Ray/sphere intersection test. The three different types of intersections are, from top to
bottom, no hit, two intersection points, and a single hit (when the two intersections are the same).

88

1.2

PRECISION IMPROVEMENTS FOR RAY/SPHERE INTERSECTION

These t-values can be plugged into the ray equation, which will generate two
intersection points, Py 1 = R(ty 1) = 0 + ty ,d. After you have computed an intersection
point, say, Py, the normalized normal at the pointis

P -G

Y (4)
-

FLOATING-POINT PRECISION CONSIDERATIONS

Floating-point arithmetic can break down surprisingly quickly, in particular when
using 32-bit single-precision numbers to implement Equation 3. We will provide
remedies for two common cases: if the sphere is small in relation to the distance to
the ray origin (Figure 7-3), and if the ray is close to a huge sphere (Figure 7-4).

Figure 7-3. Four unit spheres (r = 1) placed at distances of [from left to right] 100, 2000, 4100, and
8000 from an orthographic camera. Directly implementing Equation 3 can result in severe floating-
point precision artifacts, up to missing intersections altogether, as for the 4100 case.

Figure 7-4. Quadratic equation precision: the zoomed result when using the original, schoolbook test
for a huge sphere forming the ground “plane” (left], and the effect of the more stable solver from Press
et al. [é] [right).

89

RAY TRACING GEMS

90

To understand why these artifacts are visible, we need a brief introduction to the
properties of floating-point numbers. Ignoring the sign bit, floats are internally
represented as s x 28, with a fixed number of digits for the significand s and the
exponent e. For floating-point addition and subtraction, the exponent of both
numbers involved needs to match. As such, the bits of the significand of the smaller
number are shifted right. The rightmost bits are lost, and thus the accuracy of

this number is reduced. Single-precision floats have effectively 24 bits for the
significand, which means that adding a number that is more than 2% ~ 107 times
smaller in magnitude does not change the result.

This problem of diminished significance is greatly pronounced when calculating the
coefficient ¢ = f- f — r? (Equation 2), because terms are squared before subtraction,
which effectively halves the available precision. Note that f-f= | 0 — G [?is the
squared distance of the sphere to the ray origin. If a sphere is more than 2'2r = 40961
away from O, then the radius r has no influence on the intersection solution. Artifacts
will show at shorter distances, because only a few significant bits of r remain. See
Figure 7-3.

A numerically more robust variant for small spheres has been provided by Hearn
and Baker [3], used for example by Sony Pictures Imageworks [4]. The idea is to
rewrite b? — 4ac, where we use the convenient notation that v-v = ||v||? = vZ:

b —tbac= Aa(f - CJ

2
4a
(f-dY (5)

= 4’ m -(f-r?)

=4 (- (2~ (£-d)))

= 4d? (= (F = (F-d)d)?).

The last step deserves an explanation, which is easier to understand if we interpret
the terms geometrically. The perpendicular distance [of the center G to the ray can be

A\2
calculated either by the Pythagorean theorem, f* = /2+(f -d) , or as the length of f

minus the vector from the ray origin to the foot of the perpendicular, 5= 0+(f a)a .
See Figure 7-5. This second variant is much more precise, because the vector
components are subtracted before they are squared in the dot product. The
discriminant now becomes A =r? — 2. The radius r does not lose significant bits in
this subtraction, because r > [if there is an intersection. See Figure 7-6.

PRECISION IMPROVEMENTS FOR RAY/SPHERE INTERSECTION

)

Figure 7-5. Geometric setting for options to compute E. The ray origin O, the sphere center G, and its
projection, S, onto the ray form a right-angled triangle.

Figure 7-6. Small sphere precision. The camera is moved 100x farther than the original view in
Figure 7-1 and the field of view is narrowed: the result using the traditional quadratic formula (left),
and the effect of the more stable solver from Hearn and Baker [3] [right).

Another way we can lose precision is from subtracting numbers that are close to
each other. By doing so, many of the significant bits eliminate each other, and only a
few meaningful bits remain. Such a situation, often called catastrophic cancellation,
can occur in the quadratic equation solution (Equation 3] if bx+b* —4ac, e.g., if the
intersection with a nearby huge sphere is close to the ray’s origin. Press et al. [6]

91

RAY TRACING GEMS

92

give a more stable version, used in the pbrt renderer [5] and other systems. The key
observation is that catastrophic cancellation happens only for one of the two
quadratic solutions, depending on the sign of b. We can compute that solution with

higher precision using the identity ¢ ¢ =£.
a

where q=—%(b+sign(b)\/b2—43c‘). (6)

Here, sign is the sign function, which returns 1 if the argument is greater than zero
and —1 otherwise. See Figure 7-4 for the effect.

These two methods can be used together, as they are independent of each other.
The first computes the discriminant in a more stable way, and the second then
decides how best to use this discriminant to find the distances. The quadratic
equation can also be solved without need for values such as “4” by reformulating
the b value. The unified solution, along with other simplifications, is

a=d-d, (7)

b =—f-d, (8)

A:rz—(f+£'dJ , (9)
a

where A is the discriminant. If A is not negative, the ray hits the sphere, so then b’
and A are used to find the two distances. We then compute ¢ = f? — r? as before to get

where q:b’+sign(b’)Jaz. (10)

If we can assume that the ray direction is normalized, then a = 1 and the solutions
get slightly simpler.

7.3

PRECISION IMPROVEMENTS FOR RAY/SPHERE INTERSECTION

Earlier exits and shortcuts are also possible if the situation warrants. For example,
c is positive when the ray starts outside the sphere and negative when inside, which
can tell us whether to return ¢y or t;, respectively. If b"is a negative value, then the
center of the sphere is behind the ray, so if it is also the case that c is positive, the
ray must miss the sphere [2].

There is, then, no single best way to intersect a sphere with a ray. For example, if
you know your application is unlikely to have the camera close to large spheres, you
might not want to use the method by Press et al., as it adds a bit of complication.

RELATED RESOURCES

Code implementing these variant formulations is available on Github [8]. Ray
intersectors such as those implemented in shaders in Shadertoy [7] are another
way to experiment with various formulations.

ACKNOWLEDGMENTS

Thanks to Stefan Jeschke who pointed out the Hearn and Baker small spheres
test, Chris Wyman and the Falcor team [1] for creating the framework on which
the sphereflake demo was built, and John Stone for independent confirmation of
results.

REFERENCES
[1] Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor
Rendering Framework. https://github.com/NVIDIAGameworks/Falcor, July 2017.

[2] Haines, E. Essential Ray Tracing Algorithms. In An Introduction to Ray Tracing, A. S. Glassner, Ed.
Academic Press Ltd., 1989, pp. 33-77.

[3]1 Hearn, D. D., and Baker, M. P. Computer Graphics with OpenGL, third ed. Pearson, 2004.

[4] Kulla, C., Conty, A, Stein, C., and Gritz, L. Sony Pictures Imageworks Arnold. ACM Transactions
on Graphics 37, 3 (2018), 29:1-29:18.

[5]1 Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation, third ed. Morgan Kaufmann, 2016.

[6] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes: The Art of
Scientific Computing, third ed. Cambridge University Press, 2007.

93

https://github.com/NVIDIAGameWorks/Falcor

RAY TRACING GEMS

[71 Quilez, I. Intersectors. http://www.iquilezles.org/www/articles/intersectors/
intersectors.htm, 2018.

[8] Wyman, C. A Gentle Introduction to DirectX Raytracing, August 2018. Original code linked from
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html; newer code available via
https://github.com/NVIDIAGameworks/GettingStartedwithRTXRayTracing. Last
accessed November 12, 2018.

[91 Wyman, C., and Haines, E. Getting Started with RTX Ray Tracing. https://github.com/
NVIDIAGameworks/GettingStartedwithRTXRayTracing, October 2018.

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

94

http://www.iquilezles.org/www/articles/intersectors/intersectors.htm
http://www.iquilezles.org/www/articles/intersectors/intersectors.htm
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 8

Cool Patches: A Geometric Approach
to Ray/Bilinear Patch Intersections

Alexander Reshetov
NVIDIA

ABSTRACT

We find intersections between a ray and a nonplanar bilinear patch using
simple geometrical constructs. The new algorithm improves the state of the art
performance by over 6x and is faster than approximating a patch with two triangles.

8.1 INTRODUCTION AND PRIOR ART

Computer graphics strives to visualize the real world in all its abundant shapes
and colors. Usually, curved surfaces are tessellated to take advantage of the
processing power of modern GPUs. The two main rendering techniques—
rasterization and ray tracing—now both support hardware-optimized triangle
primitives [5, 19]. However, tessellation has its drawbacks, requiring, for example,
a significant memory footprint to accurately represent the complex shapes.

Content creation tools instead tend to use higher-order surfaces due to their
simplicity and expressive power. Such surfaces can be directly tessellated and
rasterized in the DirectX 11 hardware pipeline [7, 17]. As of today, modern GPUs do
not natively support ray tracing of nonplanar primitives.

We revisit ray tracing of higher-order primitives, trying to find a balance between
the simplicity of triangles and the richness of such smooth shapes as subdivision
surfaces [3, 16], NURBS [1], and Bézier patches [2].

Commonly, third (or higher) degree representations are used to generate a
smooth surface with continuous normals. Peters [21] proposed a smooth surface
jointly modeled by quadratic and cubic patches. For a height field, a C' quadratic
interpolation of an arbitrary triangular mesh can be achieved by subdividing
each triangle into 24 triangles [28]. The additional control points are needed to
interpolate the given vertex positions and derivatives. For a surface consisting
only of quadratic or piecewise-linear patches, the appearance of smoothness can
be achieved with Phong shading [22] by interpolating vertex normals, which is

© NVIDIA 2019 95
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_8

RAY TRACING GEMS

96

illustrated in Figure 8-1. For such a model, the intersector we are going to propose
in the following sections runs about 7% faster than the optimized ray/triangle
intersector in the OptiX system [20] (when measuring wall-clock time).

T RRER

(a) flat shading of (b) Phong shading (C) flat shading of (d) flat shading of

patches patches triangles

Figure 8-1. Flat and Phong shading in the Gargoyle model [9]. The model has 21,418 patches, 33 of
those are completely flat.

Vlachos et al. [26] introduced curved point-normal (PN] triangles that only use
three vertices and three vertex normals to create a cubic Bézier patch. In such
a surface, shading normals are quadratically interpolated to model smooth
illumination. A local interpolation can be used to convert PN triangles to a G'
continuous surface [18].

Boubekeur and Alexa [6] were motivated by the same goal of using a purely local
representation and propose a method called Phong tessellation. The basic idea
of their paper is to inflate the geometry just enough to avoid the appearance of a
faceted surface.

All these techniques are well suited for rasterization, using sampling in a
parametric domain. If ray tracing is a method of choice, intersecting rays with
such surfaces requires solving nonlinear equations, which is typically carried out
through iterations [2, 13].

Atriangle is defined by its three vertices. Perhaps the simplest curved patch that
interpolates four given points Q; and allows a single-step ray intersection is a
bilinear patch given by

Qlu,v)=1-dl1-V1q, +(1-ulv@, + ul1-VIQ,, + uvaQ,,. (1)

Such a bivariate surface goes through four corner points Q; for {u,v} = {i, j}. It is a
doubly ruled surface formed by lines u = const and v = const, which are shown as
blue and red lines in Figures 8-4 and 8-5. When all four corners lie in a plane, a
single intersection can be found by splitting a quadrilateral into two triangles.

A more efficient algorithm was proposed by Lagae and Dutré [15].

8.1.1

COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

For nonplanar cases, there could be two intersections with a ray /‘?(f) =o+td
defined by its origin O and a unit direction d . The state of the art in ray tracing such
patches was established by Ramsey et al. [24], who algebraically solved a system of
three quadratic equations R(t) = Qlu, v).

In iterative methods, the error can be reduced by increasing the number of
iterations. There is no such safety in the direct methods and even quadratic
equations may lead to an unbounded error. Ironically, the chance to have a
significant error increases for flatter patches, especially viewed from a distance.
For this reason, Ramsey et al. used double precision. We confirmed this
observation by converting their implementation to single precision, which results in
significant errors at some viewing directions, as can be seen in Figure 8-2.

“Caele

Figure 8-2. Left two images: a cube and a rhombic dodecahedron with the curved quadrilateral faces
rendered with the technique by Ramsey et al. [24] [single precision]. Right two images: our intersector,
which is more robust since it does not miss any intersections.

Finding a ray/triangle intersection is a much simpler problem [14] that can

be facilitated by considering elementary geometric constructs (a ray/plane
intersection, a distance between lines, an area of a triangle, a tetrahedron volume,
etc.). We exploit such ideas for a ray/patch intersection using the ruled property

of the surface (Equation 1). Note that a similar methodology was proposed by
Hanrahan [11], though it was only implemented for the planar case.

PERFORMANCE MEASUREMENTS

For ease of presentation, we named our technique GARP (acronym for Geometric
Approach to Ray/bilinear Patch intersections). It improves the performance of the
single precision Ramsey et al. [24] intersector by about 2x, as measured by wall-clock
time. Since ray tracing speed is substantially affected by the acceleration structure
traversal and shading, the real GARP performance is even higher than that.

To better understand these issues, we created a single-patch model and performed
multiple intersection tests to negate the effects of the traversal and shading on
performance. Such experiments demonstrate that the GARP intersector by itself is
6.5x faster than the Ramsey single precision intersector.

97

RAY TRACING GEMS

98

In fact, GARP is faster than the intersector in which each quadrilateral is
approximated by two triangles during rendering (it results in a somewhat different
image). We also measured the performance when quadrilaterals are split into
triangles during preprocessing and then submitted to a BVH builder. Interestingly,
such an approach is slower than the two other versions: GARP and run-time
triangle approximation. We speculate that the quadrilateral representation

of a geometry (compared with a fully tessellated one) serves as an efficient
agglomerative clustering, in spirit of Walter et al. [27].

One advantage of a parametric surface representation is that the surface is
defined by a bijection from a two-dimensional parametric space {u,v} € [0, 1] x [0, 1]
into a three-dimensional shape. Applications that use rasterization can directly
sample in a two-dimensional parametric domain. In ray tracing methods, once the
intersection is found, it can be verified that the found v and vare in the [0, 1] interval
to keep only the valid intersections.

If an implicit surface f(x,y,z) = 0 is used as a rendering primitive, different patches
have to be trimmed and connected together to form a composite surface. For
bilinear patches, whose edges are line segments, such trimming is rather
straightforward. This is the approach that was adopted by Stoll et al. [25], who
proposed a way to convert a bilinear patch to a quadratic implicit surface. We did
not compare their method with GARP directly but noticed that the approach by
Stoll et al. requires clipping the found intersection by the front facing triangles of a
tetrahedron {Quq, Qo1, Q10, Q11}. GARP performance is faster than using just two ray/
triangle intersection tests. We achieve this by considering the specific properties of
a bilinear patch (which is a ruled surface]. On the other hand, implicit quadrics are
more general in nature and include cylinders and spheres.

MESH QUADRANGULATION

An important—though somewhat tangential to our presentation—question is how
to convert a triangular mesh into a quadrilateral representation. We have tested
three such systems:

1. the Blender rendering package [4].
2. theInstant field-aligned meshes method by Jakob et al. [12].

3. the Quadrangulation through Morse-parameterization hybridization system as
proposed by Fang et al. [9].

COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

Only the last system creates a fully quadrangulated mesh. There are two possible
strategies for dealing with a triangle/quadrilateral mix: treat each triangle as a
degenerative quadrilateral, or use a bona fide ray/triangle intersector for triangles.
We have chosen the former approach since it is slightly faster (it avoids an additional
branch). Setting Q;; = Q;y in Equation 1 allows us to express barycentric coordinates
in a triangle {Qqo, @10, Qp1} using patch parameters {u, v} as {(1 — ul(1 = v),u, (1 — ulv}.
As an alternative, the interpolation formula (Equation 1) can be used directly.

Figure 8-3 shows the different versions of the Stanford bunny model ray traced

in OptiX [20]. We cast one primary ray for each pixel at a screen resolution of

1000 = 1000 pixels, and use 9 ambient occlusion rays for each hit point. This is
designed to emulate a distribution of primary and secondary rays in a typical ray
tracing workload. The performance is measured by counting the total number of
rays processed per second, mitigating the effects of the primary ray misses on
overall performance. We set the ambient occlusion distance to o and let such rays
terminate at “any hit” for all the models in the paper.

ry | 'y

(a) original (b) Blender (C) Instant (d) Blender (e) Instant

model: model: mesh: model mesh at 50%
0 patches 32867 patches 14962 patches reuses vertex
69451 triangles 3713 triangles 454 triangles the original reduction
770 Mrays/s 825 Mrays/s 841 Mrays/s vertices

Figure 8-3. Different versions of the Stanford bunny ray traced on a Titan Xp using ambient occlusion.

Blender reuses the original model vertices, while the instant mesh system tries to
optimize their positions and allows to specify an approximate target value for the
number of new vertices; Figures 8-3d and 8-3e show the resulting mesh. Phong
shading is used in the models shown in Figures 8-3a and 8-3c.

For comparison, the single precision version of the intersector by Ramsey et al.
[24] achieves 409 Mrays per second for the model in Figure 8-3b and 406 Mrays/s
for the model in Figure 8-3c. For the double precision version of the code, the
performance drops to 196 and 198 Mrays/s, respectively.

Neither of the used quadrangulation systems know that we will be rendering
nonplanar primitives. Consequently, the flatness of the resulting mesh is used
in these systems as a quality metric (about 1% of the output quadrilaterals are

99

RAY TRACING GEMS

8.2

100

totally flat). We consider it as a limitation of our current quadrilateral mesh
procurement process and, conversely, as an opportunity to exploit the nonplanar
nature of the bilinearly interpolated patches in the future.

GARP DETAILS

Ray/patch intersections are defined by t (for the intersection point along the ray) and
{u, v} for the point on the patch. Knowing only t is not sufficient because a surface
normal is computed using the u and v values. Even though eventually we will

need all three parameters, we start with finding only the value of u, using simple
geometric considerations [i.e., not trying to solve algebraic equations outright).

Edges of a bilinear patch (Equation 1) are straight lines. We first define two points
on the opposite edges P.(u) = (1 — u)Qy + uQ: and P,lu) = (1 — ulQy; + uQ;;; then,
using these points, we consider a parametric family of lines passing through P,
and P, as shown in Figure 8-4. For any u € [0, 1], the line segment (P,(u), P,(u))
belongs to the patch.

n=(P-P)xd -

Figure 8-4. Finding ray/patch intersections.

First Step We first derive the equation for computing the signed distance between
the ray and the line (P,(u), P,(u)) and set it to 0. This distance is (P, — 0) - n/||n||,
where n =(Fj, —Q)Xa . We need only the numerator, and setting it to 0 gives a
quadratic equation for u.

The numerator is a scalar triple product (P, -0)-(#, —Pa)xa and it is the (signed)
volume of the parallelepiped defined by the three given vectors. It is a quadratic

COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

polynomial of u. After some trivial simplifications, its coefficients are reduced to
the expressions a, b, and c computed in lines 14-17 in Section 8.4. We set apart the
expression for q, = (Qyy — Quo) x (Qg; — @41}, which can be precomputed. If the length
of this vector is 0, the quadrilateral is reduced to a (planar) trapezoid, in which case
the coefficient ¢ for u? is zero, and there is only one solution. We handle this case
with an explicit branch in our code (at line 23 in Section 8.4).

For a general planar quadrilateral that is not a trapezoid, the vector q, is
orthogonal to the quadrilateral’s plane. Explicitly computing and using its value
helps with the accuracy of computations, since in most models patches are almost
planar. It is important to understand that, even for planar patches, the equation

a + bu + cu? = 0 has two solutions. One such situation is shown in the left part of
Figure 8-5. Both roots are in the [0, 1] interval and we have to compute v in order to
reject one of the solutions. This figure shows a self-overlapping patch. For a non-
overlapping planar quadrilateral, there could be only one root v in the [0, 1] interval
for which v € [0, 1]. Even so, there is no reason to explicitly express this logic in the
program, as this needlessly increases code divergence.

Figure 8-5. Left: ray intersects planar patch at {u, v} = {0.3,0.5} and {0.74,2.66}. Right: there is no
intersection between the ray and the (extended) bilinear surface in which the patch lies.

Using the classic formula (-b++/b* —4ac)/ 2¢ for solving a quadratic equation
has its perils. Depending on the sign of the coefficient b, one of the roots requires
computing the difference of the two (relatively) big numbers. For this reason, we
compute the stable root first [23] and then use Vieta's formula u,u, = a/c for the
product of the roots to find the second one (code starts at line 26).

Second Step Next, we find vand t for each root u that is inside the [0, 1] interval.
The simplest approach would be to pick any two equations (out of three) from
P +v(F,—P)=0+td. However, this will potentially result in numerical errors

101

RAY TRACING GEMS

8.3

102

since the coordinates of P,(u] and P,(u) are not computed exactly and choosing the
best two equations is not obvious.

We tested multiple different approaches. The best one, paradoxically, is to ignore the
fact that the lines O+¢d and P, + v[P, — P,) intersect. Instead, we find the values of
v and t that minimize the distance between these two lines (which will be very close
to 0). It is facilitated by computing the vector n= (Pb —F;)Xa that is orthogonal to
both these lines as shown in Figure 8-4. The corresponding code starts at lines 31
and 43 in Section 8.4 which leverages some vector algebra optimizations.

Generally speaking, there will always be an intersection of a ray with a plane
(unless the ray is parallel to the plane). This is not true for a nonplanar bilinear
surface, as shown in the right part of Figure 8-5. For this reason, we abort the
intersection test for negative determinant values.

Putting everything together results in simple and clean code. It could be simplified
even further by first transforming the patch into a ray-centric coordinate system
inwhich 0=0and d= {0,0,1} . One such branch-free transformation was recently
proposed by Duff et al. [8]. However, we have found that such an approach is only
marginally faster, since the main GARP implementation is already optimized to a
high degree.

DISCUSSION OF RESULTS

The intersection point could be computed as either X, = R(t] or as X, = Qlu, v] using

the found parameters t, u, and v. The distance ||X,-Xq|| between these two points
provides a genuine estimate for the computational error (in an ideal case, these two
points coincide). To get a dimensionless quantity, we divide it by the patch’s perimeter.
Figure 8-6 shows such errors for some models, which are linearly interpolated from
blue (for no error) to brown (for error > 10-°). The two-step GARP process dynamically
reduces a possible error in each step: first, we find the best estimation for u and
then—using the found u—aim at further minimizing the total error.

02000

Figure 8-6. Color-coded errors in models from Fang et al. [9] collection. We linearly interpolate from
blue (for error = 0] to brown [for error >10-).

COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

Mesh quadrangulation, to some degree, improves its quality. During such

a process, vertices become more aligned, allowing for a better ray tracing
acceleration structure. Depending on the complexity of the original model, there

is an ideal vertex reduction ratio, at which all model features are still preserved,
while the ray tracing performance is significantly improved. We illustrate this in
Figures 8-7 to 8-9, showing the original triangular mesh on the left (rendered with
OptiX intersector] and three simplified patch meshes, reducing the total number of
vertices roughly by 50% for each subsequent model.

(a) 1087716 A (b) 560563 < (c) 252342 < (d) 126691 <
OptiX 505 A 563 a 604 N 636
T 570 0 606 T 636
< 538 < 577 < 604
[24] 366 [24] 374 [24] 378

Figure 8-7. The original version of Happy Buddha rendered with OptiX ray/triangle intersector (7a)
and three quadrangulated models (7b-7d). The performance data (in Mrays/s on Titan Xp) is given for
the following intersectors:

/ GARP in world coordinates,

1 GARP in ray-centric coordinates,

<> treating each quadrilateral as two triangles,
[24] and the Ramsey et al. intersector.

103

RAY TRACING GEMS

104

(a) 1oM A (b) 2.3M <

OptiX 215 %
4
<
(24]

316
325
291
180

(c) o0.92M <

e
+
<>
(24]

383
399
361
198

(d) 0.58M <

e
+
<>
[24]

425
435
400
204

Figure 8-8. Stanford Thai Statue.

Figure 8-9. Stanford Lucy model.

8.4

COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

For the quadrangulation, we used the instant field-aligned mesh system described
by Jakob et al. [12]. This does not always create pure quadrilateral meshes: in our
experiments, roughly 1% to 5% triangles remained in the output. We treated each
such a triangle as a degenerative quadrilateral (i.e., by simply replicating the third
vertex). For models from the Stanford 3D scanning repository, which are curved
shapes, about 1% of the generated patches are totally flat.

For each model in Figures 8-7 through 8-9, we report performance for the GARP
algorithm, for GARP in the ray-centric coordinate system, for the version in which
each quadrilateral is treated as two triangles, and for the reference intersector
by Ramsey et al. [24]. Performance is measured by counting the total number of
rays cast, including one primary ray per pixel and 3 x 3 ambient occlusion rays for
each hit. The GARP wall-clock performance improvement, with respect to a single
precision Ramsey code, is inversely proportional to the model complexity, since
more complex models require more traversal steps.

Though our method cannot compete with the speed of the hardware ray/triangle
intersector [19], GARP shows the potential for future hardware development. We
presented a fast algorithm for a nonplanar primitive, which might be helpful for
certain problems. Such possible future research directions include rendering

of height fields, subdivision surfaces [3], collision detection [10], displacement
mapping [16], and other effects. There are also multiple CPU-based ray tracing
systems that would benefit from GARP, though we did not yet implement the
algorithm in such systems.

CODE

1 RT_PROGRAM void intersectPatch(int prim_idx) {
2 // ray is rtbeclarevariable(Ray, ray, rtCurrentRay,) in OptiX

3 // patchdata is optix::rtBuffer

4 const PatchData& patch = patchdata[prim_idx];

5 const float3* q = patch.coefficients();

6 // 4 corners + "normal" gn

7 float3 q00 = q[0], ql0 = g[1], g1l = q[2], qO01 = q[3];

8 float3 el0 = q1l0 - q00; // g0l ——————————- gqll

9 float3 ell = ql1 - q10; // | |
10 float3 e00 = q01 - q00; // | €00 ell | we precompute
11 float3 gn = q[4]; // | el0 | gn = cross(ql0-q00,
12 g00 -= ray.origin; // q00 -------———- qlo q01-q11)

13 ql0 -= ray.origin;

14 float a = dot(cross(q00, ray.direction), e00); // the equation 1is
15 float ¢ = dot(gn, ray.direction); // a+ b u+ c uA2
16 float b = dot(cross(qlO, ray.direction), ell); // first compute

105

RAY TRACING GEMS

17 b -=a+ c; // a+b+c and then b
18 float det = b*b - 4*a*c;

19 if (det < 0) return; // see the right part of Figure 5

20 det = sqrt(det); // we -use_fast_math in CUDA_NVRTC_OPTIONS
21 float ul, u2; // two roots(u parameter)

22 float t = ray.tmax, u, v; // need solution for the smallest t > 0

23 if (c==0) { // if ¢ == 0, it is a trapezoid
24 ul = -a/b; u2 = -1; // and there 1is only one root
25 } else { // (c != 0 in Stanford models)
26 ul = (-b - copysignf(det, b))/2; // numerically "stable" root

27 u2 = a/ul; // Viete's formula for ul*u2

28 ul /= c;

29 1}

30 if (0 <= ul & ul <= 1) { // is it inside the patch?
31 float3 pa = Terp(q00, gl10, ul); // point on edge el0 (Fig. 4)
32 float3 pb = Terp(e00, ell, ul); // it is, actually, pb - pa
33 float3 n = cross(ray.direction, pb);

34 det = dot(n, n);

35 n = cross(n, pa);

36 float tl = dot(n, pb);

37 float vl = dot(n, ray.direction); // no need to check tl < t
38 if (t1 > 0 && 0 <= vl && vl <= det) { // if tl > ray.tmax,

39 t = tl/det; u = ul; v = vl/det; // it will be rejected

40 } // in rtPotentialIntersection
41}

42 if (0 <= u2 & u2 <= 1) { // it is slightly different,
43 float3 pa = Terp(q00, gl0, u2); // since ul might be good

44 float3 pb = Terp(e00, ell, u2); // and we need 0 < t2 < tl
45 float3 n = cross(ray.direction, pb);

46 det = dot(n, n);

47 n = cross(n, pa);

48 float t2 = dot(n, pb)/det;

49 float v2 = dot(n, ray.direction);

50 if (0 <= v2 && V2 <= det && t > t2 && t2 > 0) {

51 t = 1t2; u=u2; v =v2/det;

52 }

53 }

54 if (rtpPotentialIntersection(t)) {

55 // Fill the intersection structure irec.

56 // Normal(s) for the closest hit will be normalized in a shader.
57 float3 du = lerp(el0, g1l - q01, v);

58 float3 dv = lerp(e00, ell, u);

59 irec.geometric_normal = cross(du, dv);

60 #i1f defined (SHADING_NORMALS)

61 const float3* vn = patch.vertex_normals;

62 irec.shading_normal = lerp(lerp(vn[0],vn[1],u),

63 Terp(vn[31,vn[2],u),v);

COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

64 #else
65 irec.shading_normal = irec.geometric_normal;
66 #endif
67 irec.texcoord = make_float3(u, v, 0);
68 irec.id = prim_idx;
69 rtReportIntersection(Ou);
70 %
71 }
ACKNOWLEDGMENTS

We used the Blender rendering package [4] and instant field-aligned meshes
system [12] for mesh quadrangulation. We deeply appreciate the possibility to do
research with the Stanford 3D scanning repository models and with ones provided
by Fang at al. [9]. These systems and models are used under a creative commons
attribution license.

The authors would also like to thank the anonymous referees and the book editors
for their valuable comments and helpful suggestions.

REFERENCES

[1] Abert, 0., Geimer, M., and Muller, S. Direct and Fast Ray Tracing of NURBS Surfaces. In IEEE
Symposium on Interactive Ray Tracing (2006), 161-168.

[2] Benthin, C., Wald, I., and Slusallek, P. Techniques for Interactive Ray Tracing of Bézier Surfaces.
Journal of Graphics Tools 11, 2 (2006}, 1-16.

[3] Benthin, C., Woop, S., Niefiner, M., Selgrad, K., and Wald, I. Efficient Ray Tracing of Subdivision
Surfaces Using Tessellation Caching. In Proceedings of High-Performance Graphics (2015),
pp. 5-12.

[4] Blender Online Community. Blender—a 3D Modelling and Rendering Package. Blender Foundation,
Blender Institute, Amsterdam, 2018.

[51 Blinn, J. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. Morgan Kaufmann Publishers Inc.,
1996.

[6] Boubekeur, T., and Alexa, M. Phong Tessellation. ACM Transactions on Graphics 27, 5 (2008),
141:1-141:5.

[7] Brainerd, W., Foley, T., Kraemer, M., Moreton, H., and Nief3ner, M. Efficient GPU Rendering of
Subdivision Surfaces Using Adaptive Quadtrees. ACM Transactions on Graphics 35, 4 (2016),
113:1-113:12.

107

RAY TRACING GEMS

108

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Duff, T., Burgess, J., Christensen, P., Hery, C., Kensler, A., Liani, M., and Villemin, R. Building an
Orthonormal Basis, Revisited. Journal of Computer Graphics Techniques 6, 1 (March 2017), 1-8.

Fang, X., Bao, H., Tong, Y., Desbrun, M., and Huang, J. Quadrangulation Through Morse-
Parameterization Hybridization. ACM Transactions on Graphics 37, 4 (2018), 92:1-92:15.

Fournier, A., and Buchanan, J. Chebyshev Polynomials for Boxing and Intersections of
Parametric Curves and Surfaces. Computer Graphics Forum 13, 3 (1994), 127-142.

Hanrahan, P. Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates,
http://graphics.stanford.edu/courses/cs348b-04/rayhomo.pdf, 1989.

Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. Instant Field-Aligned Meshes. ACM
Transactions on Graphics 34, 6 (Nov. 2015), 189:1-189:15.

Kajiya, J. T. Ray Tracing Parametric Patches. Computer Graphics [SIGGRAPH) 16, 3 (July 1982), 245-254.

Kensler, A., and Shirley, P. Optimizing Ray-Triangle Intersection via Automated Search. [EEE
Symposium on Interactive Ray Tracing (2006}, 33-38.

Lagae, A., and Dutré, P. An Efficient Ray-Quadrilateral Intersection Test. Journal of Graphics Tools
10, 4 (2005), 23-32.

Lier, A., Martinek, M., Stamminger, M., and Selgrad, K. A High-Resolution Compression Scheme
for Ray Tracing Subdivision Surfaces with Displacement. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1, 2 (2018), 33:1-33:17.

Loop, C., Schaefer, S., Ni, T., and Castano, |. Approximating Subdivision Surfaces with Gregory
Patches for Hardware Tessellation. ACM Transactions on Graphics 28, 5 (2009), 151:1-151:9.

Mao, Z., Ma, L., and Zhao, M. G1 Continuity Triangular Patches Interpolation Based on PN
Triangles. In International Conference on Computational Science (2005), pp. 846-849.

NVIDIA. NVIDIA RTX™ platform, https://developer.nvidia.com/rtx, 2018.

Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D.,
McGuire, M., Morley, K., Robison, A., and Stich, M. OptiX: A General Purpose Ray Tracing Engine.
ACM Transactions on Graphics 29, 4 (2010), 66:1-66:13.

Peters, J. Smooth Free-Form Surfaces over Irregular Meshes Generalizing Quadratic Splines. In
International Symposium on Free-form Curves and Free-form Surfaces (1993), pp. 347-361.

Phong, B. T. lllumination for Computer-Generated Images. PhD thesis, The University of Utah, 1973.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes 3rd Edition:
The Art of Scientific Computing, 3 ed. Cambridge University Press, 2007.

Ramsey, S. D., Potter, K., and Hansen, C. D. Ray Bilinear Patch Intersections. Journal of Graphics,
GPU, & Game Tools 9, 3 (2004), 41-47.

http://graphics.stanford.edu/courses/cs348b-04/rayhomo.pdf
https://developer.nvidia.com/rtx

[25]

[26]

[27]

[28]

Qoo

COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

Stoll, C., Gumhold, S., and Seidel, H.-P. Incremental Raycasting of Piecewise Quadratic Surfaces
on the GPU. In IEEE Symposium on Interactive Ray Tracing (2006), pp. 141-150.

Vlachos, A., Peters, J., Boyd, C., and Mitchell, J. L. Curved PN Triangles. In Symposium on
Interactive 3D Graphics (2001), pp. 159-166.

Walter, B., Bala, K., Kulkarni, M. N., and Pingali, K. Fast Agglomerative Clustering for Rendering.
IEEE Symposium on Interactive Ray Tracing (2008), 81-86.

Wong, S., and Cendes, Z. C1 Quadratic Interpolation over Arbitrary Point Sets. IEEE Computer
Graphics and Applications 7, 11 (1987), 8-16.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do

not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder.

109

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 9

Multi-Hit Ray Tracing in DXR

Christiaan Gribble
SURVICE Engineering

9.1

ABSTRACT

Multi-hit ray traversal is a class of ray traversal algorithm that finds one or more,
and possibly all, primitives intersected by a ray, ordered by point of intersection.
Multi-hit traversal generalizes traditional first-hit ray traversal and is useful in
computer graphics and physics-based simulation. We present several possible
multi-hit implementations using Microsoft DirectX Raytracing and explore the
performance of these implementations in an example GPU ray tracer.

INTRODUCTION

Ray casting has been used to solve the visibility problem in computer graphics
since its introduction to the field over 50 years ago. First-hit traversal returns
information regarding the nearest primitive intersected by a ray, as shown on the
left in Figure 9-1. When applied recursively, first-hit traversal can also be used
to incorporate visual effects such as reflection, refraction, and other forms of
indirect illumination. As a result, most ray tracing APIls are heavily optimized for
first-hit performance.

Figure 9-1. Three categories of ray traversal. First-hit traversal and any-hit traversal are well-known
and often-used ray traversal algorithms in computer graphics applications for effects like visibility
(left) and ambient occlusion (center]. We explore multi-hit ray traversal, the third major category of
ray traversal that returns the N closest primitives ordered by point of intersection (for N > 1]. Multi-hit
ray traversal is useful in a number of computer graphics and physics-based simulation applications,
including optical transparency [right).

© NVIDIA 2019 1M1
E. Haines, T. Akenine-Moller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_9

RAY TRACING GEMS

A second class of ray traversal, any-hit traversal, also finds application in computer
graphics. With any-hit traversal, the intersection query is not constrained to return
the nearest primitive but simply whether or not a ray intersects any primitive within
a specified interval. Any-hit traversal is particularly useful for effects such as
shadows and ambient occlusion, as shown in the center in Figure 9-1.

In the third class of traversal, multi-hit ray traversal [5], an intersection query
returns information concerning the N closest primitives intersected by a ray. Multi-
hit traversal generalizes both first-hit traversal (where N = 1) and all-hit traversal,
a scheme in which ray queries return information concerning every intersected
primitive (where N = co], while accommodating arbitrary values of N between these
extremes.

Multi-hit traversal is useful in a number of computer graphics applications, for
example, fast and accurate rendering of transparent objects. Raster-based
solutions impose expensive fragment sorting on the GPU and must be extended
to render coplanar objects correctly.! In contrast, multi-hit traversal offers a
straightforward means to implement high-performance transparent rendering
while handling overlapping coplanar objects correctly.

Importantly, multi-hit traversal can also be used in a wide variety of physics-based
simulations, or so-called non-optical rendering, as shown on the right in Figure 9-1.
In domains such as ballistic penetration, radio frequency propagation, and thermal
radiative transport, among others, the relevant phenomena are governed by
equations similar to the Beer-Lambert Law and so require ray/primitive intervals,
not just intersection points. These simulations are similar to rendering scenes in
which all objects behave as participating media.

A correct multi-hit ray traversal algorithm is a necessary, but insufficient,
condition for modern applications; performance is also critical for both
interactivity and fidelity in many scenarios. Modern ray tracing engines address
performance concerns by hiding complicated, highly optimized ray tracing kernels
behind clean, well-designed APIs. To accelerate ray queries, these engines

use numerous bounding volume hierarchy (BVH) variants based on application
characteristics provided to the engine by the user. These engines provide fast
first-hit and any-hit ray traversal operations for use in applications across optical
and non-optical domains, but they do not typically support multi-hit ray traversal
as a fundamental operation.

"The problem of coplanar objects, both in transparent rendering and in physics-based simulation, is discussed
more thoroughly by, for example, Gribble et al. [5]; interested readers are referred to the literature for additional
details.

112

9.2

MULTI-HIT RAY TRACING IN DXR

Early work on multi-hit ray traversal [5] assumes an acceleration structure based
on spatial subdivision, in which leaf nodes of the structure do not overlap. With
such structures, ordered traversal—and therefore generating ordered hit points—
is straightforward: sorting is required only within, not across, leaf nodes. However,
ordered traversal in a structure based on object partitioning, such as a BVH, is not
achieved so easily. While an implementation based on a traversal priority queue
(rather than a traversal stack]) enables front-to-back traversal of a BVH [7], most
publicly available, widely used production ray tracing APIs do not provide ordered
BVH traversal variants.

However, these APIs, including Microsoft DirectX Raytracing (DXR), expose
features enabling implementation of multi-hit ray tracing entirely with user-level
code, thereby leveraging their existing—and heavily optimized—BVH construction
and traversal routines. In the remainder of this chapter, we present several
possible multi-hit implementations using DXR and explore their performance in
an example GPU ray tracing application. Source and binary distributions of this
application are available [4], permitting readers to explore, modify, or enhance
these DXR multi-hit implementations.

IMPLEMENTATION

As noted in Section 9.1 and discussed in detail by Amstutz et al. [1], the problem

of multi-hit ray tracing with unordered BVH traversal variants is compounded by
overlapping nodes. Correctness requires either naive multi-hit traversal [5], which
is potentially slow, or modification of BVH construction or traversal routines, which
not only imposes potentially significant development and maintenance burdens in
production environments, but is simply not possible with implementation-neutral
ray tracing APls.

To address these issues, we present two DXR implementations each of two
multi-hit traversal algorithms: naive multi-hit traversal and node-culling
multi-hit BVH traversal [3]. Our first implementation of each algorithm leverages
DXR any-hit shaders to satisfy multi-hit intersection queries along each ray. DXR
any-hit shaders execute whenever a ray intersects a geometry instance within the
current ray interval, [y, tmax], regardless of its position along the ray relative to
other intersections. These shaders do not follow any defined order of execution
for intersections along a ray. If an any-hit shader accepts a potential intersection,
its hit distance becomes the new maximum value for the ray interval, t,.

Our second implementation of each algorithm satisfies multi-hit queries using
DXR intersection shaders, which offer an alternative representation for geometry
in a bottom-level acceleration structure. In this case, the procedural primitive is

13

RAY TRACING GEMS

114

defined by its axis-aligned bounding box, and a user-defined intersection shader
evaluates primitive intersections when a ray intersects that box. The intersection
shader defines attributes describing intersections, including the current hit
distance, that are then passed to subsequent shaders. Generally speaking, DXR
intersection shaders are less efficient than the built-in ray/triangle intersection
routines, but they offer far more flexibility. We exploit these shaders to implement
both naive and node-culling multi-hit ray traversal for triangle primitives as an
alternative to the DXR any-hit shader implementations.

In these implementations, each shader assumes buffers for storing multi-hit
results: a two-dimensional (width x height) buffer for per-ray hit counts and

a three-dimensional (width x height x (Ng,er, + 1)) buffer for hit records, each
comprising a hit-point intersection distance (t-value), the diffuse surface color,
and the value N, - V'to support simple surface shading operations. The any-hit
shader implementations use a user-defined ray payload structure to track the
current number of hits and require setting the D3D12_RAYTRACING_GEOMETRY_
FLAG_NO_DUPLICATE_ANYHIT_INVOCATION geometry flag to disallow multiple
any-hit shader invocations. The corresponding ray generation shaders set the
RAY_FLAG_FORCE_NON_OPAQUE ray flag to treat all ray/primitive intersections as
non-opaque. In contrast, the intersection shader implementations require buffers
storing triangle vertices, faces, and material data, properties typically managed by
DXR when using the built-in triangle primitives.

All shaders rely on utility functions for shader-side buffer management, color
mapping for visualization, and so forth. Likewise, each shader assumes values
controlling the final rendered results, including Nyger,, background color, and
various color-mapping parameters affecting the visualization modes supported by
our example application. Other DXR shader states and parameters—for example,
the two-dimensional output buffer storing rendered results—are ultimately
managed by Falcor [2], the real-time rendering framework underlying our
application. For clarity and focus of presentation, these elements are omitted from
the implementation highlights that follow.

Our example ray tracing application leverages Chris Wyman's dxrTutors.Code
project [8], which itself builds on Falcor, to manage DXR states. The project
dxrTutors.Code provides a highly abstracted CPU-side C++ DXR API, designed
both to aid programmers in getting DXR applications running quickly and to enable
easy experimentation. While these dependencies are required to build our multi-
hit ray tracing application from source, the multi-hit DXR shaders themselves

can be adapted to other frameworks that provide similar DXR abstractions in a
straightforward manner. We highlight these implementations in the remainder of
this section, and we explore the resulting performance in Section 9.3.

MULTI-HIT RAY TRACING IN DXR

9.21 NAIVE MULTI-HIT TRAVERSAL

Any multi-hit traversal implementation returns information concerning the

N < Nguery closest ray/primitive intersections, in ray order, for values of Nggery in
[1,). Afirst approach to satisfying such queries, naive multi-hit ray traversal,
simply collects all valid intersections along the ray and returns at most Ny, of
these to the user. A DXR any-hit shader implementation of this algorithm is shown
in the following listing.

1 [shader ("anyhit")]
2 void mhAnyHitNaive(inout mhRayPayload raypPayload,

3 BuiltinIntersectionAttribs attribs)
4 {

5 // Process candidate intersection.

6 uint2 pixelidx = DispatchRaysIndex();

7 uint2 pixelDims = DispatchRaysDimensions();

8 uint hitStride = pixelDims.x*pixelDims.y;

9 float tval = RayTCurrent();
10

11 // Find index at which to store candidate intersection.

12 uint hi = getHitBufferIndex(min(rayPayload.nhits, gNquery),
13 pixelIdx, pixelDims);

14 uint lo = hi - hitStride;

15 while (hi > 0 && tval < gHitT[10o])

16 {

17 // Move data to the right ...

18 gHitT [hi] = gHitT [To];
19 gHitDiffuse [hi] = gHitDiffuse [10];
20 gHitNdotVv [hi] = gHitNdotVv [1o];
21

22 //... and try next position.

23 hi -= hitStride;

24 lo -= hitStride;

25 }

26

27 // Get diffuse color and face normal at current hit point.
28 uint primIdx = PrimitiveIndex();

29 float4 diffuse
30 float3 Ng

getDiffusesurfacecolor(primidx);
getGeometricFaceNormal(primIdx);

31

32 // Store hit data, possibly beyond index of the N <= Nquery closest
33 // intersections (i.e., at hitPos == Nquery).

34 gHitT [hi] = tval;

35 gHitDiffuse [hi] = diffuse;

36 gHitNdotv [hi] =

37 abs(dot(normalize(Ng), normalize(worldRayDirection())));
38

39 ++rayPayload.nhits;

40

115

RAY TRACING GEMS

116

41 // Reject the intersection and continue traversal with the incoming
42 // ray interval.

43 IgnoreHit(Q);

44 %

For each candidate intersection, the shader determines the index at which to
store the corresponding data, actually stores that data, and updates the number
of intersections collected so far. Here, intersection data is collected into buffers
with exactly Nquery + 1 entries per ray. This approach allows us to always write
(even potentially ignored) intersection data following the insertion sort loop—no
conditional branching is required. Finally, the candidate intersection is rejected
by invoking the DXR IgnoreHit intrinsic in order to continue traversal with the
incoming ray interval, [tmin, tmax-

The intersection shader implementation, outlined in the listing that follows,
behaves similarly. After actually intersecting the primitive (in our case, a triangle),
the shader again determines the index at which to store the corresponding data,
actually stores that data, and updates the number of intersections collected so
far. Here, intersectTriangle returns the number of hits encountered so far to
indicate a valid ray/triangle intersection, or zero when the ray misses the triangle.

1 [shader("intersection")]
2 void mhIntersectNaive()

3 {

4 HitAttribs hitAttrib;

5 uint nhits = intersectTriangle(PrimitiveIndex(), hitAttrib);
6 if (nhits > 0)

7 A

8 // Process candidate intersection.

9 uint2 pixelIdx = DispatchRaysIndex();
10 uint2 pixelbims = DispatchRaysDimensions();
11 uint hitStride = pixelDims.x*pixelDims.y;
12 float tval = hitAttrib.tval;
13
14 // Find index at which to store candidate intersection.
15 uint hi = getHitBufferIndex(min(nhits, gNquery),
16 pixelIdx, pixelDims);
17 // OMITTED: Equivalent to lines 13-35 of previous Tisting.
18
19 uint hcIdx = getHitBufferIndex(0, pixelIdx, pixelDims);
20 ++gHitCount[hcIdx];
21 %
22 }

Aside from the need to compute ray/triangle intersections, some important
differences between the any-hit shader and the intersection shader
implementations exist. For example, per-ray payloads are not accessible
from within DXR intersection shaders, so we must instead manipulate

9.2.2

MULTI-HIT RAY TRACING IN DXR

the corresponding entry in the global two-dimensional hit counter buffer,

gHitCount. In addition, the multi-hit intersection shader omits any calls to the
DXR ReportHi t intrinsic, which effectively rejects every candidate intersection
and continues traversal with the incoming ray interval, [tmin, tmaid, @s is required.

Naive multi-hit traversal is simple and effective. It imposes few implementation
constraints and allows users to process as many intersections as desired. However,
this algorithm is potentially slow. It effectively implements the all-hit traversal
scheme, as the ray traverses the entire BVH structure to find (even if not store) all
intersections and ensure that the N < Ny, closest of these are returned to the user.

NODE-CULLING MULTI-HIT BVH TRAVERSAL

Node-culling multi-hit BVH traversal adapts an optimization common for first-hit
BVH traversal to the multi-hit context. In particular, first-hit BVH traversal variants
typically consider the current ray interval, [tmin, tmax, to cull nodes based on t,a,,

the distance to the nearest valid intersection found so far. If during traversal a ray
enters a node at teer > tmax, the node is skipped, since traversing the node cannot
possibly produce a valid intersection closer to the ray origin than the one already
identified.

The node-culling multi-hit BVH traversal algorithm incorporates this optimization
by culling nodes encountered along a ray at a distance beyond the farthest valid
intersection among the N > Ny, collected so far. In this way, subtrees or ray/
primitive intersection tests that cannot produce valid intersections are skipped
once it is appropriate to do so.

Our node-culling DXR any-hit shader implementation is highlighted in the listing
that follows. The corresponding naive multi-hit implementation differs from this
implementation only in the way that valid intersections are handled by the shader.
In the former, intersections are always rejected to leave the incoming ray interval
[tmin, tmax) Unchanged and, ultimately, traverse the entire BVH. In the latter, however,
we induce node culling once the appropriate conditions are satisfied, i.e., only after
N > Ngyery intersections have been collected.

1 [shader("anyhit™)]
2 void mhAnyHitNodeC(inout mhRayPayload raypPayload,

3 BuiltinIntersectionAttribs attribs)

4 {

5 // Process candidate intersection.

6 // OMITTED: Equivalent to lines 5-37 of first Tisting.

7

8 // If we store the candidate intersection at any index other than
9 // the last valid hit position, reject the intersection.
10 uint hitPos = hi / hitStride;

117

RAY TRACING GEMS

118

11 if (hitPos != gNquery - 1)

12 IgnoreHit(Q;

13

14 // otherwise, induce node culling by (implicitly) returning and
15 // accepting RayTCurrent() as the new ray interval endpoint.

16 }

We also note that the DXR any-hit shader implementation imposes an additional
constraint on ray interval updates: With any-hit shaders, we cannot accept using
any intersection distance other than the one returned by the DXR RayTCurrent
intrinsic. As a result, the implicit return-and-accept behavior of the shader is valid
only when the candidate intersection is the last valid intersection among those
collected so far (i.e., when it is written to index gNquery-1). Writes to all other
entries, including those within the collection of valid hits, must necessarily invoke
the IgnoreHit intrinsic. This DXR-imposed constraint stands in contrast to node-
culling multi-hit traversal implementations in at least some other ray tracing
APlIs (see, for example, the implementation presented by Gribble et al. [6]), and it
represents a lost opportunity to cull nodes as a result of stale t,,,, values.

However, the node-culling DXR intersection shader implementation, shown in the
following listing, does not fall prey to this potential loss of culling opportunities.
In this implementation, we control the intersection distance reported by the
intersection shader and can thus return the value of the last valid hit among the
N > Ngyery collected so far. This is done simply by invoking the DXR ReportHit
intrinsic with that value any time the actual intersection point is within the Nggery
closest hits.

1 [shader("intersection")]
2 void mhIntersectNodeC()

3 {

4 HitAttribs hitAttrib;

5 uint nhits = intersectTriangle(PrimitiveIndex(), hitAttrib);

6 if (nhits > 0)

7 A

8 // Process candidate intersection.

9 // OMITTED: Equivalent to lines 9-20 of second listing.
10
11 // Potentially update ray interval endpoint to gHitT[lastIdx] if we
12 // wrote new hit data within the range of valid hits [0, Nquery-1].
13 uint hitPos = hi / hitStride;
14 if (hitPos < gNquery)
15 {
16 uint lastIdx =
17 getHitBufferIndex(gNquery - 1, pixelIdx, pixelDims);
18 ReportHit(gHitT[TastIdx], 0, hitAttrib);
19 }
20 }

21}

9.3

9.3.1

MULTI-HIT RAY TRACING IN DXR

Node-culling multi-hit BVH traversal exploits opportunities for early-exit despite
unordered BVH traversal. Early-exit is a key feature of first-hit BVH traversal
and of buffered multi-hit traversal in acceleration structures based on spatial
subdivision, so we thus hope for improved multi-hit performance with the node-
culling variants when users request fewer-than-all hits.

RESULTS

Section 9.2 presents several implementation alternatives for multi-hit ray tracing
in DXR. Here, we explore their performance in an example GPU ray tracing
application. Source and binary distributions of this application are available [4],
permitting readers to explore, modify, or enhance these multi-hit implementations.

PERFORMANCE MEASUREMENTS

We report performance of our DXR multi-hit ray tracing implementations using eight
scenes of varying geometric and depth complexity rendered from the viewpoints
depicted in Figure 9-2. For each test, we render a series of 50 warmup frames
followed by 500 benchmark frames at 1280 x 960 pixel resolution using visibility rays
from a pinhole camera and a single sample per pixel. Reported results are averaged
over the 500 benchmark frames. Measurements are obtained on a Windows 10 RS4
desktop PC equipped with a single NVIDIA GeForce RTX 2080 Ti GPU (driver version
416.81). Our application compiles with Microsoft Visual Studio 2017 Version 15.8.9
and links against Windows 10 SDK 10.0.16299.0 and DirectX Raytracing Binaries
Release V1.3.

sibe fair conf truck
80k tris 174k tris 282k tris 426k tris

&=

tank hball sanm pplant
1.0M tris 2.8M tris 10.5M tris 12.7M tris

Figure 9-2. Scenes used for performance evaluation. Eight scenes of varying geometric and depth
complexity are used to evaluate the performance of our multi-hit implementations in DXR. First-hit
visible surfaces hide significant internal complexity in many of these scenes, making them particularly
useful in tests of multi-hit traversal performance.

19

RAY TRACING GEMS

9.3.1.1

In the figures referenced throughout the remainder of this section, we use the
following abbreviations to denote particular traversal implementation variants:

> fhit: A straightforward implementation of standard first-hit ray traversal.

> ahit-n: The any-hit shader implementation of naive multi-hit ray traversal.

> ahit-c: The any-hit shader implementation of node-culling multi-hit ray traversal.
> isec-n: The intersection shader implementation of naive multi-hit ray traversal.
> isec-c: The intersection shader implementation of node-culling multi-hit ray

traversal.

Please refer to these definitions when interpreting results.

FIND FIRST INTERSECTION

First, we measure performance when specializing multi-hit ray traversal to first-
hit traversal. Figure 9-3 compares performance in millions of hits per second
(Mhps) when finding the nearest intersection using standard first-hit traversal
against finding the nearest intersection using multi-hit traversal (i.e., Nyyery = 1). The
advantage of node culling is clearly evident in this case. Performance with any-hit
shader node-culling multi-hit BVH traversal approaches that of standard first-hit
traversal (to within about 94% on average). However, the intersection shader node-
culling variant performs worst overall (by more than a factor of 4x, on average),
and performance with the naive multi-hit traversal variants is more than a factor of
2x to 4x worse (on average) than that with first-hit traversal for our test scenes.

2500.0

2000.0

1500.0

1000.0

500.0

0.0
Mhps sibe fair conf truck tank hball sanm pplant

mfhit mahit-n mahit-c misec-n MWisec-c

Figure 9-3. Performance of standard first-hit and multi-hit variants for finding first intersection. The
graph compares performance in millions of hits per second (Mhps] among standard first-hit traversal
and our multi-hit implementations when Ngyer, = 1.

MULTI-HIT RAY TRACING IN DXR

9.3.1.2 FIND ALL INTERSECTIONS

Next, we measure performance when specializing multi-hit ray traversal to all-

hit traversal (Ngyer, = 00). Figure 9-4 compares performance in Mhps when using
each multi-hit variant to gather all hit points along a ray. Not surprisingly, naive
and node-culling variants across the respective shader implementations perform
similarly, and differences are generally within the expected variability among trials.

3500.0
3000.0
2500.0
2000.0
1500.0
1000.0

500.0

0.0
Mhps sibe fair conf truck tank hball sanm pplant

mahit-n ®ahit-c misec-n misec-c

Figure 9-4. Performance of multi-hit variants for finding all intersections. The graph compares
performance in Mhps among our naive and node-culling variants when Ngye, = co.

9.3.1.3 FIND SOME INTERSECTIONS

Finally, we measure multi-hit performance using the values of Ny, considered
by Gribble [3], which, aside from the extremes Nguery = 1 and Ngger, = 00, comprise
10%, 30%, and 70% of the maximum number of intersections encountered along
any one ray for each scene. The find-some-intersections case is perhaps the most
interesting, given that multi-hit traversal cannot be specialized to either first-hit
or all-hit algorithms in this case. For brevity, we examine only results for the truck
scene; however, the general trends present in these results are observed in those
obtained with the other scenes as well.

Figure 9-5 shows performance in the truck scene as Ny, = 0. Generally
speaking, the impact of node culling is somewhat less pronounced than in other
multi-hit implementations. See, for example, the results reported by Gribble [3]
and Gribble et al. [6]. With the any-hit shader implementations, the positive impact
of node culling on performance relative to naive multi-hit decreases from more
than a factor of 2x when Ng.r, = 1 to effectively zero when Ny, = o0. Nevertheless,

121

RAY TRACING GEMS

the any-hit shader node-culling implementation performs best overall, often
performing significantly better (or at least not worse] than the corresponding naive
implementation. In contrast, the intersection shader implementations perform
similarly across all values of Ng..r, and both variants perform significantly worse
overall compared to the any-hit variants.

1600.0
1400.0
1200.0
1000.0
800.0
600.0
400.0
200.0

0.0
Mhps 1 10% 30% 70% all

mahit-n mahit-c misec-n misec-c

Figure 9-5. Multi-hit performance in the truck scene. The graph compares multi-hit performance in
Mhps among our multi-hit implementations for various values of Nyye,.

9.3.2 DISCUSSION

To better understand the results above, we report the total number of candidate
intersections processed by each multi-hit variant in Figure 9-6. We see that

the naive multi-hit implementations process the same number of candidate
intersections, regardless of Ny, as expected. Likewise, we see that node culling
does, in fact, reduce the total number of candidate intersections processed, at
least when Nyery is less than 30%. After that point, however, both node-culling
implementations process the same number of candidate intersections as the
naive multi-hit implementations. Above this 30% threshold, node culling offers

no particular advantage over naive multi-hit traversal for our scenes on the test
platform.

122

MULTI-HIT RAY TRACING IN DXR

12

10

Mhits 1 10% 30% 70% all

W ahit-n mahit-c MWisec-n MWisec-c

Figure 9-6. Number of candidate intersections processed in the truck scene. The graph compares the
number of candidate intersections (in millions] processed by each multi-hit implementation.

The data in Figure 9-6 also indicates that the lost opportunity to cull some nodes
with the any-hit shader variant (as discussed in Section 9.2) does not affect overall
traversal behavior in practice. In fact, when observing performance across all
three experiments, we see that the any-hit shader node-culling implementation
outperforms the intersection shader implementation by more than a factor of 2x
(on average] for all values of Ny, considered here.

Although inefficiencies arising when implementing (the otherwise built-in) ray/
triangle intersection using DXR’s mechanisms for user-defined geometry may
account for the large gap in performance between the node-culling multi-hit variants,
the visualizations in Figure 9-7 offer some additional insight. The top row depicts the
number of candidate intersections processed by each multi-hit variant for Nggery, = 9,
or 10% of the maximum number of hits along any one ray, while the bottom row
depicts the number of interval update operations invoked by each implementation. As
expected, the naive multi-hit implementations are equivalent. They process the same
total number of candidate intersections and impose no interval updates whatsoever.
Similarly, both node-culling variants reduce the number of candidate intersections
processed, with the DXR intersection shader implementation processing fewer

than the any-hit shader variant (7.6M versus 8.5M). However, this implementation
imposes significantly more interval updates than the any-hit shader implementation
(1.7M versus 437k). These update operations are the only major source of user-level
execution path differences between the two implementations. In DXR, then, the
opportunity to cull more frequently in the intersection shader implementation actually
imposes more work than the culling itself saves and likely contributes to the overall
performance differences observed here.

123

RAY TRACING GEMS

9.4

124

ahit-n ahit-c isec-n isec-c

Figure 9-7. Efficiency visualization. Heatmap visualizations using a rainbow color scale reveal that far
less work must be done per ray when using node culling compared to using naive multi-hit traversal
for Nyyery = 9 [top row). However, when comparing the node-culling variants, the potential savings due
to fewer traversal steps and ray/primitive intersection tests with the intersection shader evaporate due
to significantly more ray interval updates [bottom row). The costs outweigh the savings in this case.

CONCLUSIONS

We present several possible implementations of multi-hit ray tracing using
Microsoft DirectX Raytracing and report their performance in an example GPU ray
tracing application. Results show that, of the implementations explored here, node-
culling multi-hit ray traversal implemented using DXR any-hit shaders performs
best overall for our scenes on the test platform. This alternative is also relatively
straightforward to implement, requiring only a few more lines of code than the
corresponding naive multi-hit traversal implementation. At the same time, the any-
hit shader node-culling variant does not require reimplementation of the otherwise
built-in ray/triangle intersection operations, further reducing development and
maintenance burdens in a production environment relative to other alternatives.
Nevertheless, we make available both source and binary distributions of all four
DXR multi-hit variants in our example GPU ray tracing application [4], permitting
readers to further explore multi-hit ray tracing in DXR.

REFERENCES

[1] Amstutz, J., Gribble, C., Glnther, J., and Wald, I. An Evaluation of Multi-Hit Ray Traversal in
a BVH Using Existing First-Hit/Any-Hit Kernels. Journal of Computer Graphics Techniques 4, 4
(2015), 72-90.

[2] Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor
Rendering Framework. https://github.com/NVIDIAGameworks/Falcor, July 2017.

[3] Gribble, C. Node Culling Multi-Hit BVH Traversal. In Eurographics Symposium on Rendering (June
2016), pp. 22-24.

https://github.com/NVIDIAGameWorks/Falcor

[4]

[5]

[6]

[71

[8]

Qoo

MULTI-HIT RAY TRACING IN DXR

Gribble, C. DXR Multi-Hit Ray Tracing, October 2018. http://www. rtvtk.org/~cgribble/
research/DXR-MultiHitRayTracing. Last accessed October 15, 2018.

Gribble, C., Naveros, A., and Kerzner, E. Multi-Hit Ray Traversal. Journal of Computer Graphics
Techniques 3, 1 (2014), 1-17.

Gribble, C., Wald, I., and Amstutz, J. Implementing Node Culling Multi-Hit BVH Traversal in
Embree. Journal of Computer Graphics Techniques 5, 4 (2016), 1-7.

Wald, |., Amstutz, J., and Benthin, C. Robust Iterative Find-Next Ray Traversal. In Eurographics
Symposium on Parallel Graphics and Visualization (2018), pp. 25-32.

Wyman, C. A Gentle Introduction to DirectX Raytracing, August 2018. Original code linked from
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html; newer code available via
https://github.com/NVIDIAGameworks/GettingStartedwithRTXRayTracing. Last
accessed November 12, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do

not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder.

125

http://www.rtvtk.org/~cgribble/research/DXR-MultiHitRayTracing
http://www.rtvtk.org/~cgribble/research/DXR-MultiHitRayTracing
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 10

A Simple Load-Balancing Scheme
with High Scaling Efficiency

Dietger van Antwerpen, Daniel Seibert, and Alexander Keller
NVIDIA

ABSTRACT

This chapter describes an image partitioning scheme that can be used to distribute
the work of computing pixel values across multiple processing units. The resulting
workload distribution scheme is simple to implement, yet effective.

10.1 INTRODUCTION

A key question in attempts to distribute the rendering of a single image frame
over a number of processing units is how to assign pixels to processing units.
In the context of this chapter, we will use an abstract notion of a processing unit
or processor. For example, a processor could be a GPU, a CPU core, or a host in
a cluster of networked machines. A number of processors of various types will
generally be combined into some form of rendering system or cluster.

This chapter is motivated by the workloads commonly found in path tracing
renderers, which simulate the interaction of light with the materials in a scene.
Light is often reflected and refracted multiple times before a light transport path is
completed. The number of bounces, as well as the cost of evaluating each material,
varies dramatically among different areas of a scene.

Consider, for example, a car in an infinite environment dome. Rays that miss all
geometry and immediately hit the environment are extremely cheap to compute. In
contrast, rays that hit a headlight of the car will incur higher ray tracing costs and
will bounce around the reflectors of the headlight dozens of times before reaching
the emitters of the headlight or exiting to the environment. Pixels that cover the
headlight may thus be orders of magnitude more costly to compute than pixels
that show only the environment. Crucially, this cost is not known a priori and thus
cannot be taken into account to compute the optimal distribution of work.

© NVIDIA 2019 127
E. Haines, T. Akenine-Moller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_10

RAY TRACING GEMS

10.2

10.3

10.3.1

128

REQUIREMENTS

An effective load balancing scheme yields good scaling over many processors.
Computation and communication overhead should be low so as not to negate
speedups from a small number of processors. In the interest of simplicity, it is
often desirable to assign a fixed subset of the workload to each processor. While
the size of the subset may be adapted over time, e.g., based on performance
measurements, this re-balancing generally happens between frames. Doing so
yields a scheme that is static for each frame, which makes it easier to reduce the
amount of communication between the load balancer and the processors. A proper
distribution of work is crucial to achieving efficient scaling with a static scheme.
Each processor should be assigned a fraction of the work that is proportional to
the processor’s relative performance. This is a nontrivial task when generating
images using ray tracing, especially for physically based path tracing and similar
techniques. The situation is further complicated in heterogeneous computing
setups, where the processing power of the various processors varies dramatically.
This is a common occurrence in consumer machines that combine GPUs from
different generations with a CPU and in network clusters.

LOAD BALANCING

We will now consider a series of partitioning schemes and investigate their
suitability for efficient workload distribution in the context we have described. For
illustration, we will distribute the work among four processors, e.g., four GPUs

on a single machine. Note, however, that the approaches described below apply to
any number and type of processors, including combinations of different processor

types.

NAIVE TILING

It is not uncommon for multi-GPU rasterization approaches to simply divide the
image into large tiles, assigning one tile to each processor as illustrated on the left
in Figure 10-1. In our setting, this naive approach has the severe drawback that the
cost of pixels is generally not distributed uniformly across the image. On the left in
Figure 10-1, the cost of computing the tile on the bottom Lleft will likely dominate the
overall render time of the frame due to the expensive simulation of the headlight.
All other processors will be idle for a significant portion of the frame time while the
processor responsible for the blue tile finishes its work.

10.3.2

10.3.3

A SIMPLE LOAD-BALANCING SCHEME WITH HIGH SCALING EFFICIENCY

Figure 10-1. Left: uniform tiling with four processors. Right: detail view of scanline-based work
distribution.

Additionally, all tiles are of the same size, which makes this approach even less
efficient in heterogeneous setups.

TASK SIZE

Both issues related to naive tiling can be ameliorated by partitioning the image

into smaller regions and distributing a number of regions to each processor. In the
extreme case, the size of a region would be a single pixel. Common approaches
tend to use scanlines or small tiles. The choice of region size is usually the result of
a trade-off between finer distribution granularity and better cache efficiency.

If regions are assigned to processors in a round-robin fashion, as illustrated on
the right in Figure 10-1, rather than in contiguous blocks, workload distribution is
much improved.

TASK DISTRIBUTION

Since the cost of individual pixels is unknown at the time of work distribution, we
are forced to assume that all pixels incur the same cost. While this is generally far
from true, as described earlier, the assumption becomes reasonable if each set of
pixels assigned to a processor is well-distributed across the image [2].

To achieve this distribution, an image of n pixels is partitioned into m regions,
where m is significantly larger than the number of available processors, p. Regions
are selected to be contiguous strips of s pixels such that the image is divided into
m =2’ regions. The integer b is chosen to maximize m while keeping the number of
pixels s per region above a certain lower limit, e.g., 128 pixels. A region size of at
least s= ’_n/m_| is needed to cover the entire image. Note that it may be necessary

to slightly pad the image size with up to m extra pixels.

129

RAY TRACING GEMS

130

The set of region indices {0, ... ,m — 1} is partitioned into p contiguous ranges
proportional to each processor’s relative rendering performance. To ensure a
uniform distribution of regions across the image, region indices are then permuted
in a specific, deterministic fashion. Each index i is mapped to an image region j by
reversing the lowest b bits of / to yield j. For example, index i =39 = 00100111, is
mapped to j = 11100100, = 228 for b = 8. This effectively applies the radical inverse
in base 2 to the index. The chosen permutation distributes the regions of a range
more uniformly across the image than a (pseudo-Jrandom permutation would. An
example of this is illustrated in Figure 10-2 and in the pseudocode in Listing 10-1,
where |x] means rounding to nearest integer.

Figure 10-2. Adaptive tiling for four processing units with relative weights of 10% [red), 15% [yellow),
25% [blue), and 50% (green). Note how the headlight pixels are distributed among processing units.

Listing 10-1. Pseudocode outlining the distribution scheme.

1 const unsigned n = image.width() * image.height(Q);

2 const unsigned m = 1lu << b;

3 const unsigned s = (n + m - 1) / m;

4 const unsigned bits = (sizeof(unsigned) * CHAR_BIT) - b;
5

6 // Assuming a relative speed of w,, processor k handles
7 // |wm) regions starting at index base :Ziﬂ{Sﬂm.

8

9 // On processor k, each pixel index 7 in the contiguous bTlock
10 // of s|wm] pixels is distributed across
11 // the image by this permutation:
12 const unsigned f =i / s;
13 const unsigned p = i % s;
14 const unsigned j = (reverse (f) >> bits) + p;
15
16 // pPadding pixels are ignored.
17 if (3 < n)
18 image[j] = render(j);

A SIMPLE LOAD-BALANCING SCHEME WITH HIGH SCALING EFFICIENCY

The bit reversal function used in the permutation is cheap to compute and does not
require any permutation tables to be communicated to the processors. In addition
to the straightforward way, bit reversal can be implemented using masks [1], as
shown in Listing 10-2. Furthermore, CUDA makes this functionality available in the
form of the __brev intrinsic.

Listing 10-2. Bit reversalimplementation using masks.

1 unsigned reverse(unsigned x) // Assuming 32 bit integers

2 {

3 x = ((x & Oxaaaaaaaa) >> 1) | ((x & 0x55555555) << 1);
4 x = ((x & Oxccccccee) >> 2) | ((x & 0x33333333) << 2);
5 x = ((x & OxFOFOFfOf0) >> 4) | ((x & OxOfOFOfOf) << 4);
6 x = ((x & OxffOOff00) >> 8) | ((x & O0xO00ffOOff) << 8);
7 return (x >> 16) | (x << 16);

81}

For production scenes, the regions are unlikely to correlate strongly with image
features due to differing shapes. As a result, the pixels assigned to each processor
are expected to cover a representative portion of the image. This ensures that the
cost of a task becomes roughly proportional to the number of pixels in the task,
resulting in uniform load balancing.

10.3.4 IMAGE ASSEMBLY

In some specialized contexts, such as network rendering, it is undesirable to
allocate and transfer the entire framebuffer from each host to a master host.

The approach described in Section 10.3.3 is easily adapted to cater to this by
allocating only the necessary number of pixels on each host, i.e., s [wym]. Line 18 of
Listing 10-1 is simply changed to write to image[i-base] instead of image[j].

A display image is assembled from these permuted local framebuffers. First, the
contiguous pixel ranges from all processors are concatenated into a single master
framebuffer on the master processor. Then, the permutation is reversed, yielding
the final image. Note that the bit reversal function is involutory, i.e., its own inverse.
This property allows for efficient in-place reconstruction of the framebuffer from
the permuted framebuffer, which is shown in Listing 10-3."

"Note the use of the same reverse function in both the distribution (Listing 10-1) and the reassembly of the image
(Listing 10-3).

131

RAY TRACING GEMS

Listing 10-3. /mage assembly.

1 // Map the pixel index 7 to the permuted pixel index j.

2 const unsigned f =1 / s;

3 const unsigned p =1 % s;

4 const unsigned j = (reverse(f) >> bits) + p;

5

6 // The permutation 1is involutory:

7 // pixel j permutates back to pixel 7.

8 // The 1in-place reverse permutation swaps permutation pairs.
9 if (3 > 1)
10 swap(image[i],image[j]);

10.4 RESULTS

Figure 10-3 illustrates the differences in per-pixel rendering cost of the scene
shown in Figure 10-1. The graphs in Figure 10-4 compare the scaling efficiency of
contiguous tiles, scanlines, and two types of strip distributions for the same scene.
Both strip distributions use the same region size and differ only in their assignment
to processors. Uniformly shuffled strips use the distribution approach described in
Section 10.3.3.

Figure 10-3. Heat map of the approximate per-pixel cost of the scene shown in Figure 10-1. The
palette of the heat map is [from low to high cost] turquoise, green, yellow, orange, red, and white.

132

A SIMPLE LOAD-BALANCING SCHEME WITH HIGH SCALING EFFICIENCY

1 1
I 1 /\/‘\/\N\\/\/ N
0.8 |- 0.8
> >
o]
S S
g 06 g 06
pi]
o o
£ 04 . £ 04
o Tiles [}
o ——— Round Robin Scanlines o
021 Round Robin Strips 02
—— Uniformly Shuffled Strips
0 1 1 1 0 1 1 1
0 20 40 60 0 20 40 60
Number of Processors Number of Processors

Figure 10-4. Scaling efficiency of different workload distribution schemes for the scene shown in
Figure 10-1. Left: the processors are identical. Right: the processors have different speeds.

The predominant increase in efficiency shown on the left in Figure 10-4, especially
with larger processor counts, is due to finer scheduling granularity. This reduces
processor idling due to lack of work. The superior load balancing of the uniformly
shuffled strips becomes even more obvious in the common case of heterogeneous
computing environments, as illustrated on the right in Figure 10-4.

REFERENCES

[11 Dietz, H. G. The Aggregate Magic Algorithms. Tech. rep., University of Kentucky, 2018.
http://aggregate.org/MAGIC/

[2] Keller, A., Wachter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndorfer, J., and Kettner, L.
The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

133

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://aggregate.org/MAGIC/

»

PART II,

REFLECTIONS,
REFRACTIONS,
AND'SHADOWS

PART I

Reflections, Refractions, and
Shadows

Any ray traced rendering leads to several design decisions about what effects are
supported and how they are supported. Ray tracing’s main historical appeal is that
it handles shadows, reflections, and refractions well. However, when you sit down
and actually implement a system that supports these effects, you run into several
non-obvious design decisions. This part of the book describes several specific
approaches to some of these.

Though ray tracing a clear glass ball is straightforward, more complex models
throw a wrench in the works. For example, a simple glass of water presents three
distinct types of material interface behaviors: water/air, glass/air, and glass/water.
To get the refraction right, a ray/surface interaction needs to know not only which
interface is hit but also what material is on what side of the ray. It is problematic to
expect an artist to build a model out of these interfaces; imagine filling a glass with
water. A clever and battle-tested approach to dealing with the issue is described in
Chapter 11, “Automatic Handling of Materials in Nested Volumes.”

An issue that has plagued almost all ray tracing programs is what to do when a
bump map produces physically impossible surface normal vectors. The obvious
“hard if” code solution to ignore these can cause jarring color discontinuities.
Every ray tracer has its own home-grown hack to deal with this. In Chapter 12, “A
Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem,” a
simple statistical approach with a clean implementation is presented.

Ray tracing’s screen-space approach has made it particularly strong at generating
screen-accurate shadows without all the aliasing problems associated with
shadow maps. However, can ray tracing be made fast enough to be interactive?
Chapter 13, "Ray Traced Shadows: Maintaining Real-Time Frame Rates,” provides a
detailed explanation of how this can be done.

Most simple ray tracers send rays from the eye. Typically these programs cannot
practically generate caustics, the focused light patterns that we associate with
glasses of liquid, swimming pools, and lakes. The “practically” is because the
results are too noisy. However, sending rays from the light into the environment

137

138

is a workable approach to generate caustics. In fact, this can even be done in real
time, as described in Chapter 14, “Ray-Guided Volumetric Water Caustics in Single
Scattering Media with DXR.”

In summary, a basic ray tracer is fairly straightforward. Deploying a production
ray tracer requires some careful handling of basic effects, and this part provides
several useful approaches for doing just that.

Peter Shirley

CHAPTER 1

Automatic Handling of Materials
In Nested Volumes

Carsten Wachter and Matthias Raab
NVIDIA

ABSTRACT

We present a novel and simple algorithm to automatically handle nested volumes

and transitions between volumes, enabling push-button rendering functionality.

The only requirements are the use of closed, watertight volumes (along with a ray
tracing implementation such as NVIDIA RTX that guarantees watertight traversal and
intersection) and that neighboring volumes are not intended to intersect each other,
except for a small overlap that actually will model the boundary between the volumes.

111 MODELING VOLUMES

Brute-force path tracing has become a core technique to simulate light transport
and is used to render realistic images in many of the large production rendering
systems [1, 2]. For any renderer based on ray tracing, it is necessary to handle the
relationship of materials and geometric objects in a scene:

> To correctly simulate reflection and refraction, the indices of refraction on the
front- and backface of a surface need to be known. Note that this is not only
needed for materials featuring refraction, but also in cases where the intensity
of a reflection is driven by Fresnel equations.

> The volume coefficients (scattering and absorption] may need to be determined,
e.g., to apply volume attenuation when a ray leaves an absorbing volume.

Thus, handling volumetric data, including nested media, is an essential
requirement to render production scenes and must be tightly integrated into the
rendering core. Ray tracing, i.e., its underlying hierarchy traversal and geometry
intersection, is always affected by the limits of the floating-point precision
implementation. Even the geometrical data representation, e.g., instancing of
meshes using floating-point transformations, introduces further precision issues.
Therefore, handling volume transitions robustly at least requires careful modeling
of the volumes and their surrounding hull geometry. In the following we will
distinguish three cases to model neighboring volumes. See Figure 11-1.

© NVIDIA 2019 139
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_11

RAY TRACING GEMS

1111

11.1.2

140

Figure 11-1. Left: explicit boundary crossing of volumes marked with dashed lines. Center: air gap to
avoid numerical problems. Right: overlapping volumes.

UNIQUE BORDERS

The seemingly straightforward way shares unique surfaces between neighboring
volumes to clearly describe the interface between two (or more) media. That is,
anywhere two transparent objects meet, such as glass and water, a single surface
mesh replaces the original two meshes and is given a special type. Artists will
typically not be able to model volumes this way, as it requires manual splitting

of single objects into many subregions, depending on which subregion touches
which neighboring volume. Given the common example of a glass filled with
soda, including gas bubbles inside and touching the borders, it is not feasible

to subdivide the meshes manually, especially if the scene is animated. Another
major complication of the scheme is that each surface needs to provide separate
materials for front- and backface, where sidedness needs to be clearly defined.

Note that the unique surfaces can also be duplicated, to provide a separate
closed hull for each volume. As a result, all tedious subdivision work is avoided.
In practice, however, it is rather difficult to force the surfaces to exactly match up.
Artists, or implicitly the modeling/animation/simulation software itself, may pick
different subdivision levels, or the instancing transforms for the neighboring hulls
may differ slightly due to floating-point precision mathematics. Therefore, the ray
tracing implementation in combination with the rendering core would need to be
carefully designed to be able to handle such “matching” surfaces. The ray tracing
core, which includes the acceleration hierarchy builder, must guarantee that it
always reports all “closest” intersections. The rendering core must then also be
able to sort the list of intersections into the correct order.

ADDITIONAL AIR GAP

The second approach allows for a slight air gap between neighboring volumes to
relax most of the mentioned modeling issues. Unfortunately, this leads to new
floating-point mathematics issues caused by common ray tracing implementations:
An € offset is needed for each ray origin when generating new segments of the
path, in order to avoid self-intersection [4]. Thus, when intersecting neighboring

11.1.3

AUTOMATIC HANDLING OF MATERIALS IN NESTED VOLUMES

volume hulls, one (or more] volume transitions may be completely skipped, so it
is important that the air gap is modeled larger than this € offset. Another major
downside of inserting small air gaps is even more dramatic though, as air gaps
will drastically change the appearance of the rendering because there are more
volume transitions/refractions happening than intended. See Figure 11-2.

e = -
ey
A
- 5 e e

——

Figure 11-2. Modeling the aquarium with a slight air gap.

Figure 11-3. Slightly overlapping the water volume with the glass bowl.

OVERLAPPING HULLS

To avoid the downsides of the previous two schemes, we can force the neighboring
volumes to overlap slightly. See Figure 11-3. Unfortunately, this third approach
introduces a new problem: the ordering and the number of the path/volume
intersections will not be correct anymore. Schmidt et al. [3] impose a valid
configuration by assigning priorities to each volume. This requires explicit

artist interaction that can be tedious for complex setups, especially when doing
animations.

Note that, in addition to the three schemes mentioned, there is yet another,
noteworthy special case: fully nested/enclosed volumes that are contained
completely within another volume. See the colored objects in Figure 11-1.
These are usually expected to cut out the surrounding volume. Some rendering
implementations may also allow mixtures of overlapping or nested volumes.

RAY TRACING GEMS

1.2

142

Obviously this does not help to reduce the complexity of the implementation at all,
as previously mentioned issues still exist when entering or leaving neighboring
volumes. These transitions are even trickier to detect and to handle correctly as a
path is allowed to travel through “multiple” volumes at once. Thus, our contribution
is targeted at renderers that only handle a single volume at a time.

In the following, we describe a new algorithm to restore the correct ordering of
the path/volume intersections when using the overlapping hull approach, without
manual priority assignments. It has been successfully used in production for more
than a decade as part of the Iray rendering system [1].

ALGORITHM

Our algorithm manages a stack of all currently active (nested) materials. Each time
a ray hits a surface, we push the surface’s material onto the stack and determine
the materials on the incident and the backface of the boundary. The basic idea is
that a volume is entered if the material is referenced on the stack an odd number
of times, and exited if it is referenced an even number of times. Since we assume
overlap, the stack handling further needs to make sure that only one of the two
surfaces along a path is actually reported as a volume boundary. We achieve this by
filtering out the second boundary by checking if we have entered another material
after entering the current one. For efficiency, we store two flags per stack element:
one indicating whether the stack element is the topmost entry of the referenced
material, and the other if it is an odd or even reference. Once shading is complete
and the path is continued, we need to distinguish three cases:

1. For reflection, we pop the topmost element off the stack and update the
topmost flag of the last previous instance of the same material.

2. Fortransmission (e.g., refraction) that has been determined to leave the newly
pushed material, we not only need to pop the topmost element but also need
to remove the previous reference to that material.

3. For same material boundaries (that are to be skipped) and for transmission
that has been determined to enter the new material, we leave the stack
unchanged.

Note that in the case where the path trajectory is being split, such as tracing multiple
glossy reflection rays, there needs to be an individual stack per spawned ray.

In the case of the camera itself being inside of a volume, an initial stack needs to
be built that reflects the nesting status of that volume. To fill the stack, a ray can be
traced from outside the scene’s bounding box toward the camera position recursively.

11.2.1

AUTOMATIC HANDLING OF MATERIALS IN NESTED VOLUMES

IMPLEMENTATION

In the following we present code snippets that provide an implementation of our
volume stack algorithm. One important implementation detail is that the stack may
never be empty and should initially contain an artificial “vacuum” material (flagged
as odd and topmost) or an initial stack copied from a preprocessing phase, if the
camera is contained in a volume.

As shown in Listing 11-1, the data structure for the volume stack needs to hold the
material index and flags that store the parity and topmost attribute of the stack
element. Further, we need to be able to access materials in the scene and assume
that they can be compared. Depending on the implementation, a comparison of
material indices may actually be sufficient.

Listing 11-1. The materialindex, flags, and scene materials.

1 struct volume_stack_element

2 {

3 bool topmost : 1, odd_parity : 1;
4 int material_idx : 30;

5}

6

7

scene_material *material;

When a ray hits the surface of an object, we push the material index onto the stack
and determine the actual incident and outgoing materials indices. In the case

that the indices are the same, the ray tracing code should skip the boundary. The
variable Teaving_material indicates that crossing the boundary will leave the
material, which needs need to be respected in Pop(). See Listing 11-2.

Listing 11-2. The push and load operations.

1 void Push_and_Load(

2 // Results

3 int &incident_material_idx, int &outgoing_material_idx,

4 bool &leaving_material,

5 // Material assigned to intersected geometry

6 const int material_idx,

7 // Stack state

8 volume_stack_element stack[STACK_SIZE], int &stack_pos)

9 {

10 bool odd_parity = true;

11 int prev_same;

12 // Go down the stack and search a previous instance of the new
13 // material (to check for parity and unset its topmost flag).

143

RAY TRACING GEMS

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 }

for (prev_same = stack_pos; prev_same >= 0; --prev_same)
if (material[material_idx] ==
material[stack[prev_same].material_idx]) {
// Note: must have been topmost before.
stack[prev_same].topmost = false;
odd_parity = !stack[prev_same].odd_parity;
break;

}

// Find the topmost previously entered material (occurs an odd number
// of times, is marked topmost, and is not the new material).

int idx;

// idx will always be >= 0 due to camera volume.

for (idx = stack_pos; idx >= 0; --idx)
if ((material[stack[idx].material_idx] != material[material_idx]) &&
(stack[idx].odd_parity && stack[idx].topmost))
break;

// Now push the new material idx onto the stack.
// If too many nested volumes, do not crash.
if (stack_pos < STACK_SIZE - 1)

++stack_pos;
stack[stack_pos].material_idx = material_idx;
stack[stack_pos].odd_parity = odd_parity;
stack[stack_pos].topmost = true;

if (odd_parity) { // Assume that we are entering the pushed material.
incident_material_idx stack[idx].material_idx;
outgoing_material_idx = material_idx;
} else { // Assume that we are exiting the pushed material.
outgoing_material_idx = stack[idx].material_idx;
if (idx < prev_same)
// Not leaving an overlap,
// since we have not entered another material yet.
incident_material_idx = material_idx;
else
// Leaving the overlap,
// indicate that this boundary should be skipped.
incident_material_idx = outgoing_material_idx;

}

Teaving_material = !odd_parity;

When the rendering code continues ray tracing, we need to pop the material from
the stack, as shown in Listing 11-3. For transmission events, this will only be called
if leaving_material is set, and in that case two elements are removed from the

stack.

AUTOMATIC HANDLING OF MATERIALS IN NESTED VOLUMES

Figure 11-4. Modeling the whiskey glass with a slight air gap.

Figure 11-5. Slightly overlapping the whiskey volume with the glass.

Listing 11-3. The pop operation.

1 void Pop(

2 // The "leaving material" as determined by Push_and_Load()
3 const bool Teaving_material,

4 // Stack state

5 volume_stack_element stack[STACK_SIZE], int &stack_pos)

6 {

7 // Pop last entry.

8 const scene_material &top = material[stack[stack_pos].material_idx];
9 --stack_pos;

10

11 // Do we need to pop two entries from the stack?

12 if (leaving_material) {

13 // Search for the Tast entry with the same material.
14 int idx;

15 for (idx = stack_pos; idx >= 0; --idx)

16 if (material[stack[idx].material_idx] == top)

17 break;

18

19 // Protect against a broken stack

20 // (from stack overflow handling in Push_and_Load()).

145

RAY TRACING GEMS

1.3

146

21 if (idx >= 0)

22 // Delete the entry from the 1list by filling the gap.
23 for (int i = idx+1l; i <= stack_pos; ++i)
24 stack[i-1] = stack[i];
25 --stack_pos;
26}
27
28 // Update the topmost flag of the previous instance of this material.
29 for (int i = stack_pos; i >= 0; --1)
30 if (material[stack[i].material_idx] == top) {
31 // Note: must not have been topmost before.
32 stack[i].topmost = true;
33 break;
34 }
35 %
LIMITATIONS

Our algorithm will always discard the second boundary of an overlap that it
encounters. Thus, the actual geometry intersected depends on the ray trajectory
and will vary depending on origin. In particular, it is not possible to trace the same
path from light to camera as from camera to light, which makes the method slightly
inconsistent for bidirectional light transport algorithms such as bidirectional path
tracing. In general, the lack of an explicit order for which boundary to remove may
lead to removing the “wrong” part of the overlap. For example, the water will carve
out the overlap region from the glass bowl in Figure 11-3 for rays that enter the
glass first. If the overlap is sufficiently small, as intended, this is not a problem that
causes visible artifacts. If, however, a scene features large overlap, as, e.g., the
partially submerged ice cubes floating in Figures 11-4 and 11-5, the resulting error
can be large (although one can argue about the visible impact in that scene). Thus,
intended intersecting volumes should be avoided, but will not break the algorithm
or harm correctness of later volume interactions along the path.

Imposing an explicit order on the volume by assigning priorities [3] will resolve this
ambiguity at the price of losing push-button rendering functionality. This solution
has its limits, as ease of use is essential to many users, such as those that rely on a
ready-to-use library of assets, light setups, and materials, without knowing any of
the technical details.

Managing a stack per path increases state size, so highly parallel rendering
systems may carefully need to limit volume stack size. While the provided
implementation catches overflows, it does nothing beyond avoiding crashes.

AUTOMATIC HANDLING OF MATERIALS IN NESTED VOLUMES

ACKNOWLEDGMENTS

An early version of this algorithm was conceived in collaboration with Leonhard
Griinschlof. One part of the aquarium scene was provided by Turbosquid and the
other by Autodesk.

REFERENCES

[1] Keller, A., Wachter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndorfer, J., and Kettner,
L. The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

[2] Pharr, M. Special Issue On Production Rendering and Regular Papers. ACM Transactions on
Graphics 37, 3 (2018).

[3] Schmidt, C. M., and Budge, B. Simple Nested Dielectrics in Ray Traced Images. Journal of
Graphics Tools 7, 2 (2002), 1-8.

[4] Woo, A., Pearce, A., and Ouellette, M. It's Really Not a Rendering Bug, You See... [EEE Computer
Graphics and Applications 16, 5 (Sept 1996), 21-25.

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

147

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 12

A Microfacet-Based Shadowing
Function to Solve the Bump Terminator
Problem

Alejandro Conty Estevez, Pascal Lecocq, and Clifford Stein
Sony Pictures Imageworks

12.1

ABSTRACT

We present a technique to hide the abrupt shadow terminator line when strong
bump or normal maps are used to emulate micro-geometry. Our approach, based
on microfacet shadowing functions, is simple and inexpensive. Instead of rendering
detailed and expensive height-field shadows, we apply a statistical solution built

on the assumption that normals follow a nearly normal random distribution. We
also contribute a useful approximate variance measure for GGX, which is otherwise
undefined analytically.

INTRODUCTION

Bump mapping is widely used both in real-time rendering for games and in

batch rendering for cinema. It adds high-frequency detail on surfaces that would
otherwise be too expensive to render with actual geometry or displacement
mapping. Also, it is responsible for those last fine-grained detailed imperfections
added to surfaces.

Bump mapping works as a perturbation in the normal’s orientation that does not
derive from the underlying geometry but instead from a texture map or some
procedural pattern. Like any other shortcut, however, it can yield unwanted
artifacts—specifically the well-known hard terminator shown in Figure 12-1. This
occurs because the expected smooth intensity falloff due to the changing normal

is interrupted when the surface suddenly shadows the incident light rays. This
problem does not appear when the normal has no perturbation since the irradiance
has already dropped to zero by the time this happens. But, bump mapping has

the effect of extending the light’s influence too far by tilting normals toward the
incoming light direction, making the lit area cross the shadow terminator.

© NVIDIA 2019 149
E. Haines, T. Akenine-Maller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_12

RAY TRACING GEMS

12.2

Figure 12-1. A comparison of a cloth model with strong bump mapping. The raw result (left] shows
a sudden light drop at the terminator, while our shadowing technique (right) replaces it with a more
natural and visually pleasing smooth gradient.

We solve this problem by applying a shadowing function inspired by microfacet
theory. Bump mapping can be thought of as a large-scale normal distribution,

and by making assumptions on its properties, we can use the same shadowing
implemented in the widely used GGX microfacet distribution. Even though these
assumptions will be wrong in many cases, the shadow term still works in practice,
even when the bump or normal map exhibits nonrandom structure.

PREVIOUS WORK

To our knowledge, no specific solution to this terminator problem has been
published. There is related work from Max [5] to compute the bump-to-bump
detailed shadows in closeups, which is based on finding the horizon elevation

on a per-point basis. This technique was extended for curved surfaces by Onoue
et al. [7]. But these methods, though accurate for point-to-point shadows, require
auxiliary tables and more lookups. They are not ideal for high-frequency bump
mapping where the terminator line, and not detailed shadows, is the only concern.

Nevertheless, the terminator problem is an issue in almost every render engine,
and the offered solution is often to just moderate the height of the bump or resort
to displacement. Our solution is fast and simple and does not require any additional
data or precomputation.

On the other hand, microfacet theory and its shadowing term has been studied
extensively by Heitz [4], Walter et al. [8], and others ever since it was introduced by
Cook and Torrance [2]. We draw inspiration from their work to derive a plausible
solution to the artifacts discussed in this document.

12.3

A MICROFACET-BASED SHADOWING FUNCTION TO SOLVE THE BUMP TERMINATOR PROBLEM

METHOD

The cause of the problem is that distorting the normal alters the natural cosine
falloff of the light irradiance, making the lit area advance too far into the shadowed
area. Since the surface that the map simulates is only imaginary, the rendereris
unaware of any height-field shadowing and therefore the light vanishes suddenly,
as shown in Figure 12-2. These defects, although expected, can be distracting and
give an unwanted cartoon appearance. Artists expect this transition from light to
shadow to be smooth.

Figure 12-2. The insets show the type of terminator artifacts seen with strong bump mapping.

In Figure 12-3 we show how the bumped normals simulating a surface that does
not exist bring bright areas too close to the terminator. This occurs because the
shadowing factor (illustrated in the drawing) is completely ignored. In microfacet
theory this factor is called the shadowing/masking term, which is a value in the
[0, 1] interval that is computed from both the light and viewing directions for
maintaining reciprocity of the BSDF.

151

RAY TRACING GEMS

12.3.1

152

Smooth Normals et

/
L
— (Te)
>
—
wn
o
c
~a R
(]

T

N Ignored Shadowing

Figure 12-3. In the upper half of the sphere, smooth normals following the actual surface pose no
problem for the terminator. But, the lower half introduces a distortion that might tilt normals toward
the light source, creating bright areas too close to where the light is completely occluded. These come
from ignoring the shadowing that such an imaginary surface would receive.

We also use the Smith shadowing approach for bump mapping. It scales down
scattered energy arriving from grazing angles only, which on the terminator will
gracefully darken and blend the lit and dark areas without altering the rest of the
look. Its derivation requires knowing the normal distribution, which is unknown
for an arbitrary bump or normal map but we will make the assumption that it is
random and normally distributed. This is almost never true, but for shadowing
purposes we will show that it works well.

THE NORMAL DISTRIBUTION

We chose the GGX distribution for its simplicity and efficient implementation. Like
most distributions, it has one roughness parameter a that modulates the spread
of the microfacet slopes. A subtle bump effect will correspond to low roughness a
and a strong bump to high a. The main unknown is how to find this @ parameter.

We ruled out computing this property from the texture maps. Sometimes they
are procedural and unpredictable, and we wanted to avoid any precomputation
passes. The idea is to guess a from the bumped normal that we receive at lighting
time without extra information. That is, our guess is computed locally without
information from neighboring points.

A MICROFACET-BASED SHADOWING FUNCTION TO SOLVE THE BUMP TERMINATOR PROBLEM

We look at the tangent of the divergence angle that the bumped normal forms with
the real surface normal. For computing a shadowing term that covers this normal
with a reasonable probability, as shown in Figure 12-4, we equate this tangent to
two standard deviations of a normal distribution. Then, we can replace this with
GGX and apply the well-known shadowing term

6 = 2 ()

1+ 1+a’ tan’ 0,

where 6, is the incoming light direction angle with the real surface normal.

Surface Normal

N (0, Stan6y)

Figure 12-4. Based on the bumped normal divergence, we imagine a normal distribution where the
tangent is located in the extreme, at two standard deviations. This places 94% of the other bumped
normals closer to the actual surface orientation.

But, this raises the question of how to compute GGX’s a from the distribution
variance. GGX is based on the Cauchy distribution, which has an undefined mean
and variance. It was found numerically by Conty et al. [1] that if the long tails are
ignored to preserve most of the distribution mass, ¢ = 2a? is a good approximation
of GGX's variance. See Figure 12-5. Therefore, we use

ftan2)
aggx = 8 d' [2]

153

RAY TRACING GEMS

154

GGX Density

-4 -2 0 2 4
Slope

Figure 12-5. If we truncate the GGX distribution to exist in only the [-4a, 4al interval, we preserve
94% of its mass and the numerical result for the slope variance converges to 2o? consistently. We found
this statistical measure to be a good representation of the visual impact of a distribution that would
otherwise have undefined momenta.

but we clamp the result to [0, 1]. This measure reflects the fact that GGX shows an
apparent roughness higher than Beckmann, whose tangent variance is o?. By this
relationship the equivalence is roughly ¢, _, = \/Eaggx.

We validated our GGX's variance approximation by running a comprehensive
visual study on a GGX surface perturbed with a broad range of bump normal
distributions. We used a filtered antialiased normal technique from Olano et al.
and Dupuy et al. [3, 6] that encodes the first and second moment of the bump
slope distribution in a mipmapped texture. For each pixel, we estimate the
variance of the normal distribution by fetching the selected filtered mipmap level
for that pixel and expanding the GGX roughness accordingly. We compared our
GGX variance relationship with a naive Beckmann variance mapping and with a
reference by ray tracing non-filtered bump normals at a high sampling rate. In all
scenarios, our mapping shows better preservation of the perceived GGX
roughness induced by the bump normal distribution, as shown in Figure 12-6.

A MICROFACET-BASED SHADOWING FUNCTION TO SOLVE THE BUMP TERMINATOR PROBLEM

Figure 12-6. Roughness expansion of a GGX material according to a filtered antialiased normal
distribution using a common Beckmann variance mapping (top] and using our GGX's variance
approximation (bottom), both compared to a non-filtered reference [middle). In this test case, the GGX
base surface roughness is varying from 0.01 (left] to 0.8 [right] and shows that our approximation
better preserves the overall perceived roughness induced by the underlying normal distributions.

12.3.2 THE SHADOWING FUNCTION

In a typical microfacet BSDF, the shadowing/masking term is computed for both
light and viewing directions to preserve reciprocity. In our implementation, we
apply our bump shadowing only to the light direction to preserve the original
look as much as possible, therefore breaking this property slightly. Unlike
unshadowed microfacet BSDFs, bump mapping does not yield energy spikes at
grazing viewing angles, so applying Equation 1 to the viewing direction would
darken edges too much, as shown in Figure 12-7. If this effect poses a problem,
the full reciprocal shadowing/masking could be used instead for all non-primary
rays. Nevertheless, in our experience we have not found any issues, even with
bidirectional integrators.

155

RAY TRACING GEMS

156

Figure 12-7. Left: when a mesh presents irregular tessellation, the artifacts can become especially
distracting, even revealing the underlying triangles. Center: applying the shadowing function as
smooths out the terminator and hides these artifacts. Right: but if we try to make shading reciprocal,
we unnecessarily darken the edges, especially near the top right of the head. We chose the
non-reciprocal version in the middle for production.

We apply a scalar multiplication to the incoming light based on the incident angle.

If the shading model contains multiple BSDFs with different bump normals, each of
them will get a different scaling and should be computed separately. Listing 12-1
displays all the necessary code to perform the adjustment, demonstrating the
simplicity of our method.

Listing 12-1. These two functions suffice to implement the terminator fix. The second one can be used
as a multiplier for either the incoming light or the BSDF evaluation.

1 // Return alphaA2 parameter from normal divergence

2 float bump_alpha2(float3 N, float3 Nbump)

3 {

4 float cos_d = min(fabsf(dot(N, Nbump)), 1.0f);

5 float tan2_d = (1 - cos_d * cos_d) / (cos_d * cos_d);
6 return clamp(0.125f * tan2_d, 0.0f, 1.0f);

7}

8

9 // Shadowing factor
10 float bump_shadowing_function(float3 N, float3 Ld, float alpha2)
11 {
12 float cos_i = max(fabsf(dot(N, Ld)), le-6f);
13 float tan2_i = (1 - cos_i * cos_i) / (cos_i * cos_i);
14 return 2.0f / (1 + sqrtf(1 + alpha2 * tan2_i));
15 }

The proposal might seem counterintuitive since every shading point is due to get a
different a value. This means that bump normals aligned with the surface orientation
will receive almost no shadowing while divergent ones will receive significant shadowing.
But, as it turns out, this is exactly the desired behavior needed to address the problem.

12.4

A MICROFACET-BASED SHADOWING FUNCTION TO SOLVE THE BUMP TERMINATOR PROBLEM

RESULTS

Our method manages to smooth out the abrupt terminator with little impact on
the rest of the look. We would like to highlight some of the features that allow for
seamless integration into a production renderer:

> Inthe absence of bumps, the look remains the same. Note that in Equation 2,
for no distortion, the computed roughness is 0 and therefore there will be no
shadowing. The whole function could be bypassed.

> Subtle bumps will cause imperceptible changes because of the low estimated
a. This case does not suffer from artifacts and does not need to be fixed.

> Only grazing light directions are affected by the shadowing function. As is
typical with microfacet models, incident light at angles that more directly face
the surface will be unaffected.

Though our derivations are based on a normal distribution disconnected from reality,
we show that the distribution produces plausible results for structured patterns, as
illustrated in Figure 12-8. With low bump amplitudes in the left column, our shadowing
term only minimally changes an image that requires no correction. As the terminator
becomes more prominent, our technique behaves more strongly and smooths out the
transition region. This method is especially helpful for strong bumps.

Figure 12-8. From left to right, a structured fabric bump pattern with increasing bump amplitude. The
top row shows the uncorrected bump render result, and the bottom row demonstrates our shadowed
version with the smooth terminator.

157

RAY TRACING GEMS

ACKNOWLEDGMENTS

This work was developed within the core development of the Arnold renderer at
Sony Pictures Imageworks with Christopher Kulla and Larry Gritz.

REFERENCES

[11 Conty Estevez, A., and Lecocq, P. Fast Product Importance Sampling of Environment Maps. In
ACM SIGGRAPH 2018 Talks (2018), pp. 69:1-69:2.

[2] Cook, R. L., and Torrance, K. E. A Reflectance Model for Computer Graphics. ACM Transactions on
Graphics 1,1 (Jan. 1982), 7-24.

[3] Dupuy, J., Heitz, E., lehl, J.-C., Pierre, P., Neyret, F., and Ostromoukhov, V. Linear Efficient
Antialiased Displacement and Reflectance Mapping. ACM Transactions on Graphics 32, 6 (Sept.
2013), 211:1-211:11.

[4] Heitz, E. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of
Computer Graphics Technigues 3, 2 (June 2014), 48-107.

[5] Max, N. L. Horizon Mapping: Shadows for Bump-Mapped Surfaces. The Visual Computer 4, 2 (Mar
1988), 109-117.

[6] Olano, M., and Baker, D. Lean Mapping. In Symposium on Interactive 3D Graphics and Games
(2010), pp. 181-188.

[7] Onoue, K., Max, N., and Nishita, T. Real-Time Rendering of Bumpmap Shadows Taking Account
of Surface Curvature. In International Conference on Cyberworlds (Nov 2004), pp. 312-318.

[8] Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refraction Through

Qoo

Rough Surfaces. In Eurographics Symposium on Rendering (2007), pp. 195-206.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do

not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder.

158

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 13

Ray Traced Shadows: Maintaining
Real-Time Frame Rates

Jakub Boksansky,' Michael Wimmer,? and Jiri Bittner’
'Czech Technical University in Prague

?Technische Universitdt Wien

13.1

ABSTRACT

Efficient and accurate shadow computation is a long-standing problem in
computer graphics. In real-time applications, shadows have traditionally been
computed using the rasterization-based pipeline. With recent advances of graphics
hardware, it is now possible to use ray tracing in real-time applications, making
ray traced shadows a viable alternative to rasterization. While ray traced shadows
avoid many problems inherent in rasterized shadows, tracing every shadow ray
independently can become a bottleneck if the number of required rays rises, e.g.,
for high-resolution rendering, for scenes with multiple lights, or for area lights.
Therefore, the computation should focus on image regions where shadows actually
appear, in particular on the shadow boundaries.

We present a practical method for ray traced shadows in real-time applications.
Our method uses the standard rasterization pipeline for resolving primary-ray
visibility and ray tracing for resolving visibility of light sources. We propose an
adaptive sampling algorithm for shadow rays combined with an adaptive shadow-
filtering method. These two techniques allow computing high-quality shadows
with a limited number of shadow rays per pixel. We evaluated our method using a
recent real-time ray tracing API (DirectX Raytracing) and compare the results with
shadow mapping using cascaded shadow maps.

INTRODUCTION

Shadows contribute significantly to realistic scene perception. Due to the importance
of shadows, many techniques have been designed for shadow computation in the
past. While offline rendering applications use ray tracing for shadow evaluation [20],
real-time applications typically use shadow maps [21]. Shadow mapping is highly
flexible in terms of scene geometry, but it has several important issues:

> Perspective aliasing, which shows as jaggy shadows, due to insufficient
shadow-map resolution or poor use of its area.

© NVIDIA 2019 159
E. Haines, T. Akenine-Maller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_13

RAY TRACING GEMS

160

> Self-shadowing artifacts (shadow acne) and disconnected shadows
(Peter Panning].

> Lack of penumbras (soft shadows).
> Lack of support for semitransparent occluders.

A number of techniques have been developed to address these issues [7, 6]. Usually,
a combination of several of them and manual fine-tuning by the scene designer are
required to achieve good results. This makes an efficient implementation of shadow
mapping complicated, and different solutions are usually required for different
scenes.

Ray tracing [20] is a flexible rendering paradigm that can compute accurate
shadows with a simple algorithm and is able to handle complex lighting (area
lights, semitransparent occluders] in an intuitive and scalable way. However,

it has been difficult to achieve ray tracing performance that is sufficient for
real-time applications. This was due to limited hardware resources as well as
implementation complexity of the underlying algorithms required for real-time
ray tracing, such as fast construction and maintenance of spatial data structures.
There was also no explicit ray tracing support in popular graphics APIls used for
real-time applications.

With the introduction of NVIDIA RTX and DirectX Raytracing (DXR), it is now
straightforward to exploit ray tracing using DirectX and Vulkan APIs. The recent
NVIDIA Turing graphics architecture provides hardware support for DXR using
the dedicated RT Cores, which greatly improve ray tracing performance. These
new features combine well with emerging hybrid rendering methods [11] that use
rasterization to resolve primary-ray visibility and ray tracing to compute shadows,
reflections, and other illuminations effects.

However, even with the new powerful hardware support, we have to use our
resources wisely when rendering high-quality shadows using ray tracing. A naive
algorithm might easily cast too many rays to sample shadows from multiple light
sources and/or area light sources, leading to low frame rates. See Figure 13-1 for
an example.

13.2

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

Figure 13-1. Left: soft shadows rendered using naive ray traced shadows with 4 samples per pixel
running at 3.6 ms per frame. Center: soft shadows rendered using our adaptive method with 0 to 5
samples per pixel running at 2.7 ms per frame. Right: naive ray traced shadows using 256 samples per
pixel running at 200 ms per frame. Times measured using a GeForce RTX 2080 Ti GPU. Top: visibility
buffers. Bottom: final images.

In this chapter, we introduce a method that follows the hybrid rendering paradigm.
Our method optimizes the evaluation of ray traced shadows by using adaptive shadow
sampling and adaptive shadow filtering based on a spatiotemporal analysis of light-
source visibility. We evaluate our method using the Falcor [3] framework and compare
it with cascaded shadow maps [8] and naive ray traced shadows [20].

RELATED WORK

Shadows have been a focus of computer graphics research since the very beginning.
They are a native element of Whitted-style ray tracing [20], where for each hit point a
shadow ray is cast to each light source to determine mutual visibility. Soft shadows
were introduced through distributed ray tracing [4], where the shadow term is
calculated as an average of multiple shadow rays cast to an area light source. This
principle is still the basis for many soft shadow algorithms today.

Interactive shadows were made possible through the shadow mapping [21] and
shadow volume [5] algorithms. Due to its simplicity and speed, most interactive
applications nowadays use shadow mapping, despite a number of disadvantages and
artifacts caused by its discrete nature. Several algorithms for soft shadows are based
on shadow mapping, most notably percentage closer soft shadows [9]. However,
despite the many approaches and improvements to the original algorithms (for a
comprehensive overview, see the book and course by Eisemann et al. [6, 71}, robust
and fast soft shadows are still an elusive goal.

161

RAY TRACING GEMS

13.3

162

Inspired by advances in interactive ray tracing [18], researchers recently went
back to investigating the use of ray tracing for hard and soft shadows. However,
instead of performing a full ray tracing pass, a key idea was to use rasterization
for the primary rays and to use ray tracing for only shadow rays [1, 19], leading to
a hybrid rendering pipeline. To make this viable for soft shadows, the industry is
experimenting with temporal accumulation in various ways [2].

The NVIDIA Turing architecture finally introduced fully hardware-accelerated

ray tracing to the consumer market, and easy integration with the rasterization
pipeline exists in the DirectX (DXR) and Vulkan APls. Still, soft shadows for multiple
light sources pose a challenge and require intelligent adaptive sampling and
temporal reprojection approaches, as we will describe in this chapter.

The advent of real-time ray tracing also opens the door for other hybrid rendering
techniques, for example adaptive temporal antialiasing, where pixels that cannot
be rendered through reprojection are ray traced [14]. Temporal coherence has
been used specifically for soft shadows before [17], but here we introduce a much
simpler temporal coherence scheme based on a novel variation measure to
estimate the required sample count.

RAY TRACED SHADOWS

Shadows appear when a scene object—a shadow caster—blocks light that would
otherwise contribute to illumination at another scene object—the shadow receiver.
Shadows can appear due to direct or indirect illumination. Direct illumination
shadows are induced when the visibility of primary light sources is blocked,
indirect illumination shadows are induced when strong reflections or refractions
of light at scene surfaces are blocked. In this chapter, we focus on the case of
direct illumination—indirect illumination can be evaluated independently using
some standard global-illumination technique such as path tracing or many-light
methods.

The outgoing radiance L(p, w,) at a point P in direction w, is defined by the rendering
equation [12]:

L(P o)=L, (a)o)+/f(P,a),., 0,)L(P. o) (v, -h,)do, 1)
Q
where L.(w,) is the self-emitted radiance, f(P,w,, ®,) is the BRDF, L,(P,w,) is the
incoming radiance from direction w;, and ﬁp is the normalized surface normal at
point P.

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

For the case of direct illLumination with a set of point light sources, the direct
illumination component of L can be written as a sum of contributions from individual
light sources:

Ld(P, a)g) =y f(P, @, coo)L[(P[, w,) v(P, P

, le-Al

o, N
) [P [2]

where P, is the position of light [, the light direction is w, = (P, — P)/||P,— P||, L{P, @] is
the radiance emitted from light source (in direction w,, and v(P, P} is the visibility term,
which equals 1 if the point P, is visible from P and O if it is not.

The evaluation of v(p, pJ) can easily be performed by shooting a ray from P toward P,
and checking if the corresponding line segment is unoccluded. Care must be taken
near the endpoints of the line segment not to include the self-intersection of the
geometry of the shaded point or the light source. This is usually resolved by shrinking
the parametric range for valid intersection by a small e-threshold.

The L, due to an area light source a is given by

)= [H(P.w,0,)L,(X)v(P,X)(wx'ﬁp)(_wx'ﬁ*)d/l, 3)

XeA “x "P— /\/”2

where A is the surface of light a, Ny is the normal of the light source surface at point
X, wx= (X = P)/|IX = P|| is the direction from point P toward point X on the light source,
L.(X,wy) is the radiance emitted from point X in direction wy, and v(P,X] is the visibility
term that equals 1 if the point X'is visible from P and 0 if it is not.

This integral is commonly evaluated by Monte Carlo integration using a set of well-
distributed samples S on the light source:

Ld(, g) ‘S‘Zf(Pa) a)) (X,a)X)V(P,)()(wX'ﬁP)(_wx'ﬁx)'

Xes "P - X"z

where |S]| is the number of light samples. In our work we separate the shading and
visibility terms, and for shading we approximate the area light source with a centroid
C of the light source:

(4)

Ld(P' wo) ~ f(p o o)L (C, a)c)(a)c-ﬁp)(_a)c-ﬁc)L V(P, X). (5)

» Yo

This allows us to accumulate the results of visibility tests for each light within a given
frame and store them in a dedicated visibility buffer for each light. The visibility buffer
is a screen-sized texture that holds visibility terms for each pixel. A more elaborate

163

RAY TRACING GEMS

13.4

164

method of shading and visibility separation was recently proposed by Heitz et al. [11],
which might be used for light sources with large areas or more complicated
BRDFs. Separating visibility allows us to decouple visibility computation from
shading as well as analyzing and using the temporal coherence of visibility. An
illustration of visibility evaluation for a point light source and an area light source
is shown in Figure 13-2. The difference between the resulting shadows is shown in
Figure 13-3.

L, Q QLz

4

/
ray, / ray,

P P

Figure 13-2. Left: for point light sources, a single shadow ray is cast toward each light source from
the shaded point P. The ray toward light source L, is blocked by an occluder, resulting in V[P, L] = 0. The
ray toward L, is unoccluded, thus v(P, L;] = 1. Right: the visibility of a disk light source is evaluated by
sampling using several shadow rays.

Figure 13-3. An example of hard shadows (left] and soft shadows [right] computed by ray tracing,
showing both visibility buffer and shaded image.

ADAPTIVE SAMPLING

A naive implementation of shadow computation using ray tracing requires a high
number of rays to achieve a desired shadow quality, especially for larger area
lights, as shown in Figure 13-1. This would decrease performance considerably
with an increase in the number and/or size of lights. Because a high number of rays
is required only in penumbra areas of an image, we base our method on identifying

13.4.1

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

these areas and then using more rays to sample them effectively. The fully lit and fully
occluded areas are sampled sparsely, and the saved computational resources can be
used for other ray tracing tasks such as reflections.

TEMPORAL REPROJECTION

To effectively increase the sample count used per pixel, we use temporal reprojection,
which allows us to accumulate visibility values for visible scene surfaces over

time. Temporal reprojection is becoming a standard tool in many recent real-time
rendering methods [15], and in many cases it is already implemented within the
application rasterization pipeline. We use the accumulated values for two purposes:
first, estimating visibility variation to derive the required sample count, and second,
determining the kernel size for filtering the sampled visibility.

We store the results of visibility calculations from previous frames in a cache
containing four frames. To ensure correct results for dynamic scenes, we use reverse
reprojection [15], which handles the camera movement. When starting an evaluation
of a new frame, we perform reverse reprojection of three previous frames, stored in
the cache, to the current frame. Thus, we always have a four-tuple of values from four
consequent frames aligned with the image corresponding to the current frame.

Given a point P, in clip space in frame t, the reprojection finds the corresponding clip-
space coordinates /3H inframe t—1as
ﬁm =C..V, Vt4 0;1 A (6)

where C,and C,_; are the camera projection matrices and V,and V,_, are the camera
viewing matrices. After reprojection we check for depth discontinuities and discard
invalid correspondences [(mostly disocclusions). Depth discontinuities are detected
using a relative depth difference condition, i.e., the point is successfully reprojected if
the following condition holds:
1

P?

t=1

<e, e=c+c|h, (7)

n
z

where ¢ is an adaptive depth similarity threshold, 7, is a z-coordinate of the view-
space normal of the corresponding pixel, and ¢; and ¢, are user-specified constants of
linear interpolation (we used ¢; = 0.003 and ¢, = 0.017). The adaptive threshold ¢ allows
for greater depth differences of valid samples on sloped surfaces.

165

RAY TRACING GEMS

13.4.2

166

For successfully reprojected points, we store image-space coordinates in the range
O to 1. If the reprojection fails, we store negative values to indicate the reprojection
failure for subsequent computations. Note that, as all previous frames have already
been aligned during the previous reprojection steps, only one cache entry for
storing the depth values 7, is sufficient.

IDENTIFYING PENUMBRA REGIONS

The number of samples (rays) required for a given combination of shaded point
and light source generally depends on the light size, its distance to the shaded
point, and the complexity of occluding geometry. Because this complexity
would be difficult to analyze, we base our method on using the temporal visibility
variation measure Av(x):

Av,(x) = max(l/H (x)..v,, (x)) - min(l/H (%).-vy (X)) (8)

where v,_;(x] ... v,_,[x) are the cached visibility values for a pixel x in the four
previous frames. Note that these visibility values are cached in a single four-
component texture per light.

The described measure corresponds to the range variation measure, which is
highly sensitive to extreme values of the visibility function. Therefore, this measure
is more likely to detect penumbra regions than other, smoother variation measures
such as the variance.

The variation is zero for either fully lit or fully occluded areas and is usually greater
than zero in penumbra areas. Our sample sets are generated with regard to the
fact that we use four frames for variation computation, so they repeat only after
these four frames. See Section 13.5.1.

To make results more temporally stable, we apply a spatial filter on the variation
measure followed by a temporal filter. The spatial filter is expressed as

Avi = M, (Av,)*T, (9)

13x13*

where Ms, 5 is a nonlinear maximum filter using a 5 x 5 neighborhood followed by
a convolution with a low-pass tent filter Tj3, 43 with a 13 x 13 neighborhood. The
maximum filter makes sure that a high variation detected in a single pixel will
cause a higher number of samples to be used in surrounding pixels too. This is
important for dynamic scenes to make the method more temporally stable and
for cases where the penumbra is completely missed in nearby pixels. The tent

13.4.3

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

filter prevents abrupt changes in variation values to avoid flickering. Both filters are
separable, therefore we execute them in two passes to reduce the computational
effort.

Finally, we combine the spatially filtered variation measure Ay, with temporally
filtered values Av, from the four previous frames. For the temporal filtering, we use a
simple box filter, and we intentionally use the raw Av, values that are cached prior to
spatial filtering:

— 1= 1
AV =§[Aw +Z(A|/H +Av, ,+Av, ,+Av,,)] (10)

Such a combination of filters proved efficient in our tests as it is able to propagate
the variation over larger regions (using maximum and tent filters). At the same time,
it does not miss small regions with large variation by combining the spatially filtered
variation with the temporally filtered variation values from the previous frames.

COMPUTING THE NUMBER OF SAMPLES

The decision on the number of samples to be used for a given point is based on the
number of samples used in the previous frame and the current filtered variation Ay, .
We use a threshold 6 on the variation measure to decide whether to increase or
decrease sampling density at the corresponding pixel. In particular, we maintain the
sample counts s(x) for each pixel and use the following algorithm to update s(x) in the
given frame:

1. |If E/;(x)>6 and s,_;(x) < s increase the number of samples by one
{St[X] = 5{-1[X] + 1]

2. |f E/z(x)<§ and the number of samples has been stable in the four
previous frames, decrease the number of samples (s,(x) = s,_4(x) — 1).

The maximum number of samples per light s.,,, ensures a limited ray budget for each
light per frame (we use s,,., = 5 for standard settings and s,., = 8 for high-quality
settings). The constraint of stability in the four previous frames used in step (2] induces
a hysteresis into the algorithm and aims to prevent oscillations in the number of
samples caused by a feedback loop between the number of samples and the variation.
The described technique works with sufficient temporal stability and provides better
results than directly computing s(x) from Ay, (X) .

167

RAY TRACING GEMS

13.4.4

168

For pixels where reverse reprojection fails, we use s.,,, samples and replace all
cached visibility values with the current result. When a reverse reprojection fails
for all pixels on the screen, e.g., when the camera pose changes dramatically, a
sudden performance drop occurs due to the high number of samples used in each
pixel. To prevent the performance drop, we can detect large changes of camera
pose on the CPU, and we can reduce the maximum number of samples (s.,) for
several subsequent frames. This will momentarily cause noisier results, but it will
prevent frame-rate stuttering, which is usually more disturbing.

SAMPLING MASK

Pixels for which our algorithm computes sample counts equal to zero indicate

a region with no temporal and spatial variation. This is mostly the case for fully

lit and fully shadowed regions in an image. For these pixels we might skip the
calculation of visibility completely and use value from the previous frame. However,
this may lead to an accumulation of errors over time in these regions, for example
when a light is moving fast or the camera is zooming slowly (in both these cases
the reprojection succeeds, but visibility can change). Therefore, we use a mask
that enforces regular sampling for at least one fourth of the pixels. We enforce
sampling of individual blocks of pixels on the screen as performance tests have
shown that shooting a single ray for one pixel out of four in a close neighborhood
yields similar performance as shooting rays for each of these pixels (probably due
to warp dependencies). Therefore, we enforce sampling of a block of n, x n, pixels
on the screen (we get the best performance increase for n, = 8).

To ensure that every pixel is sampled at least once in four frames, we use a

matrix that checks if the sampling should be enforced in the current frame. We
find an entry in a mask of size 4 x 4 repeated over the screen that corresponds

to the location of the block. If the entry is equal to the current frame’s sequence
number modulo four, all pixels in blocks with zero sample counts are sampled
with one shadow ray per pixel per light. The mask is set up so that in each quad of
neighboring blocks, only one block will be evaluated. Furthermore, every pixel will
be evaluated once in four consecutive frames to make sure that new shadows are
detected. This is illustrated in Figure 13-4. An example of the sample distribution
using the adaptive sampling is shown in Figure 13-5.

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

n, pixels
—

n, pixels { 0

w
N
-

2 |10 3

0 3 2 1

Figure 13-4. An example of the sampling mask matrix. In each sequence of four consecutive frames, the
shadow rays are enforced even for pixels with low visibility variation.

Figure 13-5. Left: image showing the pixels with nonzero sample counts. Note the sampling of the
penumbra regions and the pattern enforced by the sampling matrix. Center: visibility buffer. Right: final
image.

13.4.5 COMPUTING VISIBILITY VALUES

As a final step in our algorithm, we employ two filtering techniques on the visibility
values themselves (as opposed to the visibility variation measure): temporal filtering,
which makes use of results from previous frames, and spatial filtering, which applies
a low-pass filter over visibility values and removes the remaining noise.

Recent denoising methods for global illumination, such as spatiotemporal variance-
guided filtering (SVGF) by Schied et al. [16] and Al-based denoisers, can produce
noise-free results from sequences of stochastically sampled images with as little
as one sample per pixel. These methods take care to preserve edge sharpness after

169

RAY TRACING GEMS

denoising (especially on textured materials), typically by using information from
noise-free albedo and normal buffers. We use a simpler solution that is specifically
tailored toward shadow computation and combines well with our adaptive sampling
strategy for shadow rays.

13.4.5.1 TEMPORAL FILTERING

To apply temporal accumulation of visibility values, we calculate an average
visibility value, effectively applying a temporal box filter on the cached reprojected
visibility values:

-1
v[:Z(V,+vt71+V,72+V,73). (11

Using a temporal box filter leads to the best visual results, since our sample sets
are generated to be interleaved over the last four frames. Note that our approach
does not explicitly account for the movement of lights. Our results indicate that
for interactive frame rates (>30 FPS) and caching only four previous frames, the
artifacts introduced by this simplification are quite minor.

13.4.5.2 SPATIAL FILTERING

170

The spatial filter operates on the visibility buffer that was already processed by the
temporal filtering step. We use a traditional cross bilateral filter with a variable-
sized Gaussian kernel to filter the visibility. The size of the filter kernel is chosen
between 1 x 1 and 9 x 9 pixels and is given by the variation measure A}, —more
variation in a given area results in more aggressive denoising. The filter size is
scaled linearly in dependence on Ay,, while the maximum kernel size is achieved
for a predefined variation of 5 (we used 5 = 0.4). To prevent popping when switching
from one kernel size to the other, we store precalculated Gaussian kernels for
each size and linearly interpolate the corresponding entries between the two
closest kernels. This is especially important for blending with the smallest kernel
size to preserve hard edges where needed.

We make use of depth and normal information to prevent shadows leaking over
geometry discontinuities. This makes the filter nonseparable, but we apply it as

if it was with reasonably good results, as can be seen in Figure 13-6. Samples
whose depths do not satisfy Equation 7 are not taken into account. Additionally, we
discard all samples for which the corresponding normals do not satisfy the normal
similarity test:

A, A, > ¢, (12)

13.5

13.5.1

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

where ﬁp is a normal at a pixel p, ﬁq is a normal of the pixel g from the neighborhood
of p, and ¢ is a normal similarity threshold (we used ¢ = 0.9).

Original Original

Filtered Filtered

Figure 13-6. Difference between raw visibility values and filtered result. Left: using naive shadow-ray
tests with 8 samples per pixel [4.25 ms per frame). Right: our method using 1 to 8 samples per pixel and
the sampling mask (2.94 ms per frame).

The temporal filtering step packs the filtered visibility buffers for four lights into
single four-component texture. Then, each spatial filtering pass operates on two of
these textures at the same time, effectively denoising eight visibility buffers at once.

IMPLEMENTATION

This section describes details regarding the implementation of our algorithm.

SAMPLE-SET GENERATION

Our adaptive sampling method assumes that we work with samples that are
interleaved over four frames. As the method uses different sample counts for

each pixel, we generate an optimized set of samples for each size used in our
implementation (1 to 8). In our implementation, we used two different quality settings:
the standard-quality setting with s, = 5, and the high-quality setting with s, = 8.

Considering that we aim to interleave the samples over four frames and that the
smallest effective spatial filter size is 3 x 3 (for spatial filtering), our sets contain

Smax X 4 x 3 x 3 samples. This yields sample counts effectively used for a single pixel of 36
for 1 sample per pixel, 72 for 2 samples per pixel, and up to 288 for 8 samples per pixel.

In each of four consecutive frames, a different subset consisting of a quarter of these
samples is used. Furthermore, in each pixel we use a different ninth of this subset.
The choice of which ninth to use is given by pixel position within a block of 3 x 3 pixels
repeated over the screen.

171

RAY TRACING GEMS

13.5.2

13.5.3

172

We optimize the direct output of a Poisson distribution generator to decrease the
discrepancy of the whole sample set also for the four subsets used in consecutive
frames and nine of their subsets used for different pixels. This procedure optimizes
sample sets with respect to their usage in temporal and spatial filtering and
reduces visual artifacts. An example sample set is shown in Figure 13-7.

Figure 13-7. Left: samples colored by position on the screen—similar colors will be evaluated in pixels
close to each other. Right: samples colored by the frame number—samples with the same color will be

used in the same frame. Samples are well distributed in both temporal and spatial domains. The figure
shows a sample set for three samples per pixel.

DISTANCE-BASED LIGHT CULLING

Even before casting the shadow rays, we can cull distant and low-intensity lights
to increase performance. To do this, we calculate the range of each light—this is
the distance where the intensity of a light becomes negligible due to its attenuation
function. Before evaluating visibility, we compare the distance of the light to

its range and simply store zero for non-contributing lights. Typical attenuation
functions (inverse of squared distance) never reach zero, and thus it is practical

to modify this function so that it reaches zero eventually, e.g., by implementing a
linear drop-off below a certain threshold. This will decrease light ranges, making
the culling more efficient while preventing popping when a light starts contributing
again after being culled.

LIMITING THE TOTAL SAMPLE COUNT

Because our adaptive algorithm puts more samples in penumbras, a significant
performance decrease can occur when the penumbra covers a large portion of the
screen. For dynamic scenes, this could display as disturbingly high variations of
frame rate.

13.5.4

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

We provide a method to limit the sample count globally based on computing the sum
of the variation measures A}, over the whole image (we compute the sum using
hierarchical reduction with mipmaps). If the sum rises above a certain threshold,

we progressively limit the number of samples that can be used in each pixel. This
threshold and the value at which a single sample per pixel should be used must be
fine-tuned to the desired performance-to-visual-quality ratio. This will resultin a
momentary decrease in visual quality, but it can be preferable to stuttering caused by
longer shadow calculation.

FORWARD RENDERING PIPELINE INTEGRATION

We implemented our algorithm within a forward rendering pipeline. Compared to
deferred rendering, this pipeline provides advantages such as simpler transparency
handling, support for more complex materials, hardware antialiasing [(MSAA), and
lower memory requirements.

Our implementation builds on top of the Forward+ pipeline introduced by Harada et al. [10],
which makes use of a depth prepass and adds a light-culling stage to solve problems with
overdraw and many lights. DXR makes integration of ray tracing into existing renderers
straightforward, and considerable investment made into materials, special effects, etc. is
therefore preserved when adding ray traced features such as shadows.

An overview of our method is shown in Figure 13-8. First, we perform the depth prepass
to fill a depth buffer with no color buffer attached. After the depth prepass, we generate
motion vectors based on camera movement and the normal buffer, which will be used
later during denoising. The normal buffer is generated from depth values. Because it is
not used for shading but denoising, this approximation works reasonably well.

1. Depth Pass

5. Sample Count
Evaluation

)

Depth Buffer

2. G-Buffer Pass

)
Motion Vector

—_—

)
Filtered Variation

4. Variation
Measure Filtering

Linear Depth
View-Space Normal

)
Variation Measure

Measure
~——

)

Number of Samples

6. Ray Tracing Pass

Cache
~———

)

) —

)

Rendered Image

8. Shading

Visibility Cache

) —

)

—_—

Filtered Visibility

—_—

3. Reprojection and
Variation Measure
Evaluation

7. Visibility Filtering

Figure 13-8. Overview of our ray tracing shadow algorithm.

173

RAY TRACING GEMS

The layout of the buffers used in our method is shown in Figure 13-9. The visibility
cache, the variance measures, and the sample counts are cached over the last
four frames for each light. The filtered visibility buffers and the filtered variation
measure buffers are stored for only the last frame for each light. Note that the
sample counts and the variation measures are packed into the same buffer.

Red Green Blue Alpha
Motion & . .
Depth Buffer Motion Vector Linear Depth RGB32
Normal Buffer View-Space Normal RGB32
Visibility Cache V., V., V.4 Vi RGBA16
per light
Av Av Av Av
Variation Measure and 1 2 3 4 RGBA1S
Samples Count Cache
n, n., n, Ny
Filtered ~ ~ ~ ~
Visibility Buffer Vi Via Vi3 V4 RGBAT6
per quartet
Filtered Variati of lights
iltered Variation ~ ~ =~ =~
Measure Buffer AVLI AVLZ AVL3 Avm RGBATS

Figure 13-9. Buffer layout used by our algorithm.

Then, we generate visibility buffers for all lights using ray tracing. We use the
depth-buffer values to reconstruct the world-space positions of visible pixels using
inverse projection. World-space pixel positions can also be read directly from a
G-buffer (if available) or evaluated by casting primary rays for greater precision.
From these positions, we shoot shadow rays toward light sources to evaluate their
visibility using our adaptive sampling algorithm. Results are denoised and stored
in visibility buffers, which are passed to the final lighting stage. Visualizations of
variation measures, sample counts, and filtering kernel sizes used by our shadow
calculation are shown in Figure 13-10 for a single frame.

174

13.6

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

Figure 13-10. Top left: filtered variation measure Zl//{. Top center: areas with sample counts evaluated
to zero shown in black. Top right: sample counts mapped to yellow-to-pink spectrum. Bottom left: spatial
filtering kernel size levels mapped to different colors. Bottom center: filtered visibility buffer. Bottom right:
final result.

The lighting stage uses a single rasterization pass during which all scene lights are
evaluated. A rasterized point is lit by all scene lights in a loop and the results are
accumulated. Note that the visibility buffer of each light is queried before shading,
which in turn is done only for visible lights—this provides implicit light culling to
increase performance.

RESULTS

We evaluated our method for computing both hard and soft shadows and compared
it with a reference shadow-mapping implementation. We used three test scenes of
20-second animation sequences with a moving camera. The Pub and Resort scenes
have similar geometric complexity, but the Pub scene contains much larger area
lights. The Breakfast scene has a significantly larger triangle count. The Pub and
Breakfast scenes represent interiors, and thus they use point lights, and the exterior
Resort scene uses directional lights. For computing soft shadows, these lights are
treated as disk lights. We used the shadow-mapping implementation of the Falcor
framework, which uses cascaded shadow map (CSM) and exponential variance
shadow map (EVSM] [13] filtering. We used four CSM cascades for directional lights
and one cascade for point lights, with the largest level using a shadow map of size
2048 x 2048. The screen resolution for all tests was 1920 x 1080.

175

RAY TRACING GEMS

13.6.1

We evaluated four shadow-computation methods: hard shadows computed using
shadow mapping (SM hard), hard shadows computed using our method (RT hard),
soft shadows computed using ray tracing with s, = 5 [RT soft SQJ, and soft
shadows computed using ray tracing with s, = 8 [RT soft HQ). The measurements
are summarized in Table 13-1.

Table 13-1. Overview of the measured results. The table shows the shadow-computation GPU times
(in ms] for the tested methods when using one and four light sources. The measurements were
performed on a GeForce RTX 2080 Ti GPU.

Pub Resort Breakfast

281k triangles 376k triangles 1.4M triangles
1 light 4 lights 1 light 4 lights 1light 4 lights
SM hard 0.7 2.6 2.3 9.1 0.9 5.9
RT hard 1.4 4.8 1.3 3.4 1.6 3.7
RT soft SQ 3.2 13.5 2.7 8.3 4.7 11.0
RT soft HQ 3.5 19.9 2.9 12.0 6.5 16.2

COMPARISON WITH SHADOW MAPPING

The measurements in Table 13-1 show that for the Breakfast and Resort scenes
with four lights, ray traced hard shadows (RT hard] outperform shadow mapping
(SM hard) by about 40% and 60%, respectively. For the Breakfast scene, we
attribute this to its large number of triangles. Increasing the number of triangles
seems to slow down the rasterization pipeline used by shadow mapping more
quickly than the RT Cores. The exterior Resort scene requires all four CSM
cascades to be generated and filtered, causing significantly longer execution times
for shadow mapping.

For the Pub scene (Figure 13-11) and the Breakfast scene (Figure 13-12] with one
light, shadow mapping is about twice as fast as hard ray traced shadows. This is
because only one CSM cascade is used for point lights, but it comes at the cost

of visual artifacts. For the Pub scene, perspective aliasing occurs close to the
camera [in the screen borders) and on the wall in the back. Also, shadows cast by
chairs are disconnected from the ground. Trying to remedy these artifacts leads to
shadow acne in other parts of the image. Ray traced shadows, on the other hand,
do not suffer from these artifacts.

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

Figure 13-11. Hard shadows comparison. Visibility buffers (left] and rendered image (right] for the Pub
scene with four lights, showing hard shadows rendered using our method (top) and shadow mapping
[bottom].

Figure 13-12. Soft shadows comparison. Visibility buffers (left] and rendered image (right] for the
Breakfast scene with four lights, showing soft shadows rendered using our method (top) and shadow
mapping (bottom).

177

RAY TRACING GEMS

13.6.2

13.6.3

178

For the Breakfast scene, EVSM filtering produces very soft and unfocused shadows
under the table. This is likely due to the insufficient shadow-map resolution in this
area, which is compensated for by stronger filtering. Using less aggressive filtering
resulted in aliasing artifacts, which were more disturbing. For the Resort scene,
the visual results of ray tracing and shadow mapping are quite similar; however,
the ray traced shadows outperform shadow mapping in most tests.

SOFT SHADOWS VERSUS HARD SHADOWS

Comparing soft and hard ray traced shadows, in our tests it takes about 2-3 times
longer to calculate soft shadows. This is, however, highly dependent on the size of
the lights. For the Pub scene, which had lights set up to produce larger penumbras,
calculation is up to 40% slower for four lights compared to the similarly complex
Resort scene. This is because we are bound to use a high number of samples in
larger areas. A visual comparison of the RT soft SQ and RT soft HQ methods is
shown in Figure 13-13. Note that for the large Breakfast scene, the execution time
did not increase linearly with the number of lights for the RT hard method. This
indicates that the RT Cores were not yet fully occupied for the single light case.

Figure 13-13. Difference between standard and high-quality adaptive sampling. Left: normal quality
(up to 5 samples per pixel). Center: high quality (up to 8 samples per pixell. Right: final render using
the high-quality setting.

Compared to the unoptimized calculation using 8 samples per pixel, our adaptive
sampling method provides a combined speedup of about 40-50% for the tested
scenes. Our method, however, achieves better visual quality thanks to the temporal
accumulation.

LIMITATIONS

Our implementation of the proposed method currently has several limitations that
might show as artifacts in fully dynamic scenes. In the current implementation,
we do not consider motion vectors of moving objects, which reduces the success
of reprojection for moving shadow receivers and can at the same time introduce
false-positive reprojection successes for a particular combination of camera and
shadow receiver movement (although this case should be quite rare).

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

More significantly, moving shadow casters are not handled by the method, which
might introduce temporal shadow artifacts. On the positive side, our method uses
a limited-size temporal buffer (only the last four frames are considered), and in
combination with the aggressive variability measure, it will usually enforce dense
sampling of the dynamic penumbras. Another problematic case is moving light
sources, which we do not address explicitly at the moment. The situation is similar
to moving shadow casters: a quickly moving light source causes severe changes
in shadows that reduce the potential of adaptive sampling and can cause ghosting
artifacts.

The current algorithm for maintaining a per-frame ray budget is relatively simple,
and it would be desirable to use a technique that would directly relate the variation
measure to the number of samples while aiming to minimize the perceived error
(including shading). In that case it would be easier to guarantee frame rates while
obtaining shadows of highest possible quality.

13.7 CONCLUSION AND FUTURE WORK

In this chapter, we have presented a method for calculating ray traced shadows using
the modern DXR API within a rasterization forward-rendering pipeline. We proposed
an adaptive shadow-sampling method that is based on estimating the variation of
the visibility function over surfaces seen by the camera. Our method produces hard
shadows as well as soft shadows using lights of various sizes. We have evaluated
various configurations of light-sampling and shadow-filtering techniques and
provided recommendations for best results.

We compared our method to a state-of-the-art shadow-mapping implementation

in terms of visual quality and performance. In general, we conclude that the higher
visual quality, simpler implementation, and high performance of ray traced shadows
makes them preferable over shadow mapping on DXR-capable hardware. This

will also move the burden of calculating shadows from rasterization to ray tracing
hardware units, making more performance available for rasterization tasks. Using
Al-based denoisers running on dedicated GPU cores can help even more in this
respect.

With shadow mapping, scene designers are often challenged with minimizing the
technique’s artifacts by setting up technical parameters such as near/far planes,
shadow-map resolutions, and bias and penumbra sizes not related to physical
lighting. With ray traced shadows, there is still a burden on designers to make shadow
calculation efficient and noise-free by using reasonable light sizes, ranges, and
placement. We believe, however, that these parameters are more intuitive and closer
to physically based lighting.

179

RAY TRACING GEMS

13.7.1

180

FUTURE WORK

Our method does not explicitly handle movement of lights, which can lead to
ghosting artifacts from rapid light movement. A correct approach would be to
discard cached visibility from previous frames when it is no longer valid after light
movement between the frames.

Shadow mapping is not view-dependent, and a common optimization is to calculate
shadow maps only when either a light or the scene changes. This optimization is not
applicable for ray tracing, as ray traced visibility buffers need to be recalculated
after every camera movement. Because of this, shadow mapping can still be
preferable for scenarios where the shadow map is rarely updated. Therefore, a
combination of high-quality ray traced shadows for significant light sources and
shadow mapping for mostly static parts of the scene and/or less contributing lights
can be desirable.

As mentioned in Section 13.3, an improved approach to combining shadows
evaluated using our method with the analytic direct illumination, such as the
one introduced by Heitz et al. [11], can be used to improve the correctness of the
rendered images.

ACKNOWLEDGEMENTS

We thank Tomas Akenine-Maller for his feedback and help with the performance
measurements, Nir Benty for assistance with the Falcor framework, and David
Sedlacek for providing the environment maps. This research was supported by the
Czech Science Foundation under project number GA18-20374S and by the MSMT
under the identification code 7AMB17AT021 within the activity MOBILITY (MSMT-
539/2017-1).

REFERENCES

[11 Anagnostou, K. Hybrid Ray Traced Shadows and Reflections. Interplay of Light Blog, https://
interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-shadows-and-
reflections/, July 2018.

[2] Barré-Brisebois, Colin. Halén, H. PICA PICA & NVIDIA Turing. Real-Time Ray Tracing Sponsored
Session, SIGGRAPH, 2018.

[3] Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor
Rendering Framework. https://github.com/NVIDIAGameworks/Falcor, July 2017.

[4] Cook, R.L., Porter, T., and Carpenter, L. Distributed Ray Tracing. Computer Graphics [SIGGRAPH]
18, 3 (July 1984), 137-145.

https://interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-­shadows-and-reflections/
https://interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-­shadows-and-reflections/
https://interplayoflight.wordpress.com/2018/07/04/hybrid-raytraced-­shadows-and-reflections/
https://github.com/NVIDIAGameWorks/Falcor

RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

[5] Crow, F. C. Shadow Algorithms for Computer Graphics. Computer Graphics (SIGGRAPH) 11, 2 (August
1977), 242-248.

[6] Eisemann, E., Assarsson, U., Schwarz, M., Valient, M., and Wimmer, M. Efficient Real-Time
Shadows. In ACM SIGGRAPH Courses (2013), pp. 18:1-18:54.

[71 Eisemann, E., Schwarz, M., Assarsson, U., and Wimmer, M. Real-Time Shadows, first ed. A K Peters
Ltd., 2011.

[8] Engel, W. Cascaded Shadow Maps. In ShaderX®: Advanced Rendering Techniques, W. Engel, Ed.
Charles River Media, 2006, pp. 197-206.

[9]1 Fernando, R. Percentage-Closer Soft Shadows. In ACM SIGGRAPH Sketches and Applications
(July 2005), p. 35.

[10] Harada, T., McKee, J., and Yang, J. C. Forward+: Bringing Deferred Lighting to the Next Level.
In Eurographics Short Papers (2012), pp. 5-8.

[11] Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic Shadows.
In Symposium on Interactive 3D Graphics and Games (2018), pp. 2:1-2:11.

[12] Kajiya, J. T. The Rendering Equation. Computer Graphics [SIGGRAPH) 20, 4 (August 1986), 143-150.

[13] Lauritzen, A. T. Rendering Antialiased Shadows using Warped Variance Shadow Maps. Master’s
thesis, University of Waterloo, 2008.

[14] Marrs, A., Spjut, J., Gruen, H., Sathe, R., and McGuire, M. Adaptive Temporal Antialiasing. In
Proceedings of High-Performance Graphics (2018), pp. 1:1-1:4.

[15] Scherzer, D., Yang, L., Mattausch, 0., Nehab, D., Sander, P. V., Wimmer, M., and Eisemann, E. A
Survey on Temporal Coherence Methods in Real-Time Rendering. In Eurographics State of the Art
Reports (2011), pp. 101-126.

[16] Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S,
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics
(2017), pp. 2:1-2:12.

[17] Schwarzler, M., Luksch, C., Scherzer, D., and Wimmer, M. Fast Percentage Closer Soft Shadows
Using Temporal Coherence. In Symposium on Interactive 3D Graphics and Games (March 2013),
pp. 79-86.

[18] Shirley, P., and Slusallek, P. State of the Art in Interactive Ray Tracing. ACM SIGGRAPH Courses,
2006.

[191 Story, J. Hybrid Ray Traced Shadows, https://developer.nvidia.com/content/hybrid-
ray-traced-shadows. NVIDIA Gameworks Blog, June 2015.

[20] Whitted, T. An Improved Illumination Model for Shaded Display. Communications of the ACM 23, 6
(June 1980), 343-349.

[21]1 Williams, L. Casting Curved Shadows on Curved Surfaces. Computer Graphics SIGGRAPH(] 12, 3
(August 1978), 270-274.

181

https://developer.nvidia.com/content/hybrid-ray-traced-shadows
https://developer.nvidia.com/content/hybrid-ray-traced-shadows

RAY TRACING GEMS

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

182

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 14

Ray-Guided Volumetric Water Caustics
In Single Scattering Media with DXR

Holger Gruen
NVIDIA

ABSTRACT

This chapter presents a hybrid algorithm that uses ray tracing and rasterization
to render surface and volumetric caustics in single scattering participating
media. The algorithm makes use of ray tracing based on DirectX Raytracing
(DXR) to generate data that drives hardware tessellation to adaptively refine
triangular beam volumes that are rendered to slice volumetric caustics. Further
on in the rendering pipeline, ray tracing is also used to generate secondary
caustics maps that store the positions of ray/scene intersections for light rays
that get reflected or refracted by a water surface.

14.1 INTRODUCTION

This chapter investigates how to make use of the DirectX 12 real-time ray tracing
API, DXR, to simplify current methods for rendering real-time volumetric water
caustics in single scattering media. Volumetric caustics have been investigated
extensively in the past [2, 5, 6, 10]. The algorithm described here uses ideas
discussed in the literature and combines them with the use of DXR ray tracing and
adaptive hardware tessellation.

Specifically, for rendering volumetric caustics, ray tracing is used twice in the
rendering pipeline. In an initial step, ray tracing is used to compute information

that then guides hardware tessellation levels for triangular beam volumes that are
used to adaptively slice caustics volumes. The rendering pipeline for accumulating
volumetric light that is scattered toward the eye uses all GPU shader stages, e.g., a
vertex shader, a hull shader, a domain shader, a geometry shader, and a pixel shader.

The primary caustics map [7] contains the positions and surface normals of the
water surface rendered from the point of view of the light. Rays are sent from these
positions on the water along the refracted and reflected light directions, resulting
in intersections with the scene. The positions of these intersections are stored in
secondary caustics maps such as the refracted caustics map and the reflected

© NVIDIA 2019 183
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_14

RAY TRACING GEMS

caustics map described in this chapter. The positions in the (primary) caustics map
and the refracted caustics map are then used to define the triangular volumetric
beams used during volumetric slicing.

This chapter focuses on underwater caustics from refracted light rays. Note that
the algorithm described here can also be used to render caustics from light that
gets reflected by the water surface and hits geometry above the water line. Also, it
is possible to replace the water surface with any other transparent interface.

In underwater game scenes, volumetric lighting is often generated from visibility
information encoded in a shadow map [4]. This shadow map contains, in this
context, the underwater geometry rendered from the light position. As such, it
delivers the intersections of the original light rays with the underwater scene
through rasterization. See Figure 14-1.

AT K N\ \/'\,—'

>

Figure 14-1. Undisturbed light rays hitting the underwater scene.

When a ray of light hits the water surface, some if its energy changes direction
as it gets refracted by the water surface. It is therefore necessary to find the
intersections of the refracted light rays with the scene. See Figure 14-2.

Figure 14-2. Refracted rays (purple] hitting the underwater scene.

184

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

A comparison of Figures 14-1 and 14-2 shows that the resulting intersection
points can be very different. This difference is more pronounced if a light ray hits
the water surface at a shallow angle. Refraction causes light rays to generate
the typical pattern of surface caustics on the underwater geometry. In a similar
manner, volumetric lighting is affected by refracted light. Several publications
[5, 6,8, 9, 10] describe how to move beyond the limits of using just a shadow map
(as shown in Figure 14-1) in the context of caustics rendering.

Typically, one of the two following classes of algorithms are used:
1. Two-dimensional image-space ray marching:

(@) March the primary depth buffer or the shadow map depth
buffer in the pixel shader to find intersections. The problem
with this approach is that refracted light rays may seem to
be occluded in both the primary view and the view from the
light, as shown in Figure 14-3.

Shadow Map Depth

\

Refracted rays

Water Surface

e e e = =

blocked by shadow Uy
map depth and g
eye depth g

=

O

Figure 14-3. The intersection point for the refracted light ray seems to be blocked in marching both
the light and eye depth maps.

185

RAY TRACING GEMS

14.2

186

(b) Render and march a set of images using:

i. Multiple depth layers of the primary depth buffer and the
shadow map.

ii. Multiple viewpoints of the primary depth buffer and the
shadow map.

ili. Distance impostors [8].

Note, however, that these methods increase the runtime cost and the
memory consumption. The implementation complexity can be significantly
higher than the DXR-based approach described later.

2. Three-dimensional voxel grid marching: This class of algorithms
voxelizes the underwater scene and marches the resulting
grid. Dependent on grid resolution, these methods can yield
impressive results. Voxelization is not a cheap operation and can
be interpreted as the rasterization-side equivalent of keeping a
bounding volume hierarchy up to date. Memory requirements
become prohibitive quickly if high grid resolutions are required.
Ray marching a sufficiently detailed 3D grid is not fast and
can become prohibitively slow. Overall, the implementation
complexity of voxelization methods is higher than the DXR-based
approach.

The technique presented in this chapter doesn’t use any of the approximate
methods just described to compute the intersections of refracted light rays.
Instead, it uses DXR to accurately compute where refracted light rays hit the
dynamic underwater scene.

VOLUMETRIC LIGHTING AND REFRACTED LIGHT

For a general introduction to volumetric lighting computations in participating
media, consult the work by Hoobler [4]. Here, we simply present the double integral
that describes how much radiance L is scattered toward the eye E from a point S of
the underwater scene:

= [[e Plple-R o) (R o)

5 Q

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

See Figure 14-4. For all points P on the half-ray from the point in the scene to the
eye and for all directions of incoming refracted light Q, the following terms are
computed:

1. The extinction along the length (() that the light has traveled
underwater before reaching P plus the length of the path from
P to the eye E. Here, 7 is the extinction coefficient of the water
volume—which is assumed to be constant in the remainder of
this chapter.

2. The scattering coefficient o,(P) at the point P.

3. The phase function p(E — P, w) that determines how much of the
light that comes in from a refracted light direction is scattered
toward the eye from P.

4. Theincoming radiance L;, at the point P along a refracted light
direction.

5. The visibility v along a refracted light direction, e.g., does the
refracted light ray reach the point P?

Volumetric
Shadow

Figure 14-4. The eye E on the left looks to the right through the water. Light from above reaches
various different locations along this ray, depending on the water’s surface, and scatters light toward
the eye.

There are two possible approximate solutions to computing the integral over all
in-scattering events:

1. Use a 3D grid to accumulate discretized in-scattering events at
the center of each grid cell.

187

RAY TRACING GEMS

188

A grid with a high enough resolution needs to be used to prevent leaking of
volumetric light through thin scene features.

(a) Trace enough refracted rays from their origin on the water
surface to the intersection point with the underwater scene.

i. Ateach grid cell that a refracted ray enters, compute the
point P on the ray that is closest to the center of the grid cell.

ii. Compute the phase function and the transmitted
radiance that reaches the eye from this point P.

iii. Accumulate the transmitted radiance in the grid cell.

(b) For each pixel on the screen, trace a ray from the pixel to the
eye. Traverse the grid on this ray and accumulate the light
that the reaches the eyes.

2. Create a sufficiently dense set of triangular beam volumes [2] to

approximate the in-scattering integral using the graphics pipeline
and additive blending.

As shown in Figure 14-5, refracted light directions can cause a triangular beam
to form a non-convex volume. The algorithm proposed in Section 14.3 tries to
prevent this case by using high tessellation levels in regions where the directions
of refracted rays change quickly and can thus create non-convex volumes.

Water Water
Triangle Triangle

Refracted
Triangle

Refracted
Triangle

Figure 14-5. Left: the refracted triangle forms a convex volume with the water triangle. Right: the
volume formed is twisted and no longer convex.

14.3

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

For each triangular beam, the graphics pipeline is used to render eight
triangles that form the exact convex bounding volume of the beam. These
triangles are generated so that their surface normals always point out of
the volume.

Along a ray from the eye, the direction of refracted light changes from where
the ray hits the backfacing triangles of the point to where it hits the frontfacing
triangles of the volume. As a result, it is not possible to use additive blending,
a positive in-scattering term at the backfacing triangles, and a negative
in-scattering term at the frontfacing triangles as proposed by Golias and
Jensen [3].

Itis possible though, using enough small volumes, to approximate the
in-scattering integral by just accumulating the in-scattering terms at the
frontfacing triangles of each volume.

The demo that accompanies this chapter uses additive blending, tessellation, and
a geometry shader to implement a volume slicing method that is inspired by the
second approach. This is reflected in the following algorithm overview.

ALGORITHM

The following seven steps are used in the demo to render volumetric water
caustics. Figure 14-6 shows an overview of these steps.

1 [Compute Beam Compression Ratios]

v

2 [Render Caustics Map]

3 Ray Trace Refracted Caustics Map and) N
Accumulate Surface Caustics | 7

o 4 [Adaptive Tessellate the Water Surface]

Guided by the Output of Step 1

11

5 [Build Triangular]

Beam Volumes

6 Render Volumetric Caustics
using Additive Blending

7 Combine Surface Caustics
and volumetric caustics

Figure 14-6. Algorithm overview.

189

RAY TRACING GEMS

14.3.1

190

Please note that, instead of tracing rays along the directions of refracted light rays,
itis also possible to trace rays along the direction of the light rays that get reflected
by the water surface and thus render reflected volumetric and surface caustics.
The demo that accompanies this chapter also implements reflected surface
caustics in addition to refracted volumetric and surface caustics.

COMPUTE BEAM COMPRESSION RATIOS

For each vertex of the water mesh that represents the geometry of the simulated
water surface, a refracted ray R is constructed. This ray starts at the current
position of the water vertex and points along the refracted direction of incident light.

The refracted water mesh has the same number of vertices and the same
triangle count as the water surface. The positions of its vertices are computed by
intersecting each ray R with the underwater geometry. Figure 14-7 depicts this
process. Every blue water surface triangle generates a purple dashed triangle in
the refracted water mesh.

Figure 14-7. Computing a refracted water mesh.

Please note that the refracted water mesh does not need to be fine enough to
follow every detail of the underwater geometry. It only needs to be detailed
enough to facilitate the computation of a high-enough-quality compression
ratio, as described below. This step can introduce an error when the water
surface is not detailed enough. It is therefore necessary to refine the water
surface if errors are detected.

As Figure 14-8 shows, the refraction of the light rays can either focus the light
within a triangular beam or do the opposite. As a result, triangles in the refracted
water mesh can have either a larger or a smaller area than their respective water
triangles.

14.3.2

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

Figure 14-8. How light can focus in a refracted water mesh.

For each triangle the beam compression ratio ris computed and stored in a buffer:

A7)’ (2)

where a() computes the area of a triangle, T, is the water surface triangle, and T, is
the refracted triangle.

The original water triangles and the refracted water triangles form coarse
triangular beams as shown in Figure 14-5. The compression ratio can also be
thought of as a value that describes the likelihood of a triangular beam forming

a non-convex volume. Consequently, the compression ratio can be used to drive
the tessellation density for subdividing each coarse triangular beam into smaller
beams. The idea to use the compression ratio from Equation 2 is not new and has
been described in the past [3].

RENDER CAUSTICS MAP

In this step, two render targets are initially cleared to indicate invalid surface
positions and surface normals.

Next, all water triangles are rendered with a pixel shader that writes the following
values to two render targets:

1. The 3D position of the water surface.
2. The surface normal at this point of the water surface.

This is shown in Figure 14-9.

191

RAY TRACING GEMS

Caustics Map

Figure 14-9. The water mesh is rendered to a caustics map as seen from the point of view of the
light—the pixels of the resulting surface carry the position of the water surface and the normal of the
water surface in this pixel.

14.3.3 RAY TRACE REFRACTED CAUSTICS MAP AND ACCUMULATE SURFACE CAUSTICS

192

This step uses DXR to trace rays for valid pixels of the caustics map rendered in
step 2. The intersections with the scene are stored in a refracted caustics map.
Also, the intersection positions are transformed to screen space and are used for
accumulation of scattered surface caustics:

1. Trace a ray for each pixel (x,y) in the caustics map that represents
a valid point on the water surface.

2. Compute the intersection of the ray with the underwater scene
geometry. It is possible to cull this ray if, for example, a shadow
map test reveals that the point on the water surface is shadowed
by geometry above the water line.

3. Write the position of the intersection into pixel (x,y) in the
refracted caustics map. See Figure 14-10.

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

Caustics Map

Refracted
Caustics Map

Figure 14-10. Ray tracing a refracted caustics map: send rays from the water surface positions
stored in the caustics map along the refracted light directions, and store the resulting ray/scene
intersections in a refracted caustics map.

Optionally, trace secondary rays along the reflected direction
(along the scene normal] of the refracted caustics rays, and write
the resulting intersection into a one-bounce caustics map at
pixel [x,y). See Figure 14-11.

193

RAY TRACING GEMS

194

One-Bounce A
Caustics Map i

>
%
>
>
»

Caustics Map

Refracted
Caustics Map

Figure 14-11. Tracing rays along the reflected direction of the caustics ray for another bounce of light,
creating a one-bounce caustics map.

Accumulate surface caustics in an offscreen buffer.

(a) Project the intersection points (including the points from
the optional step 4] to screen space—if the position is on the
screen, use InterlockedAdd () to accumulate radiance in
that screen location in a buffer.

To find out if the intersection corresponds to the frontmost
pixel on the screen, the simplest solution is to do a depth
test with a certain tolerance. Other possibilities are to also
consider the G-buffer normal of the onscreen pixel and/or
scale the brightness value by a function of the difference in
depth. It is also possible to render a unique triangle ID into
the G-buffer and to compare this ID with the primitive and
instance IDs that are available in the DXR hit shaders.

(b) The radiance value that gets accumulated can be scaled by
several factors, including the compression ratio from step 2
and/or the amount of light that has been absorbed by the
distance that the ray travels through the water [1].

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

14.3.4 ADAPTIVELY TESSELLATE THE TRIANGLES OF THE WATER SURFACE

See Figure 14-12 for a depiction of an adaptive tessellation of a triangular beam
volume.

Figure 14-12. Adaptively tessellated water triangles result in tessellated triangular beams—see
step 5.

The beam compression ratio (see Equation 2] is used to compute a tessellation
factor for the water triangle that sits at the top of the triangular beam. This
tessellation factor is scaled to:

1. Provide enough slices to approximate the in-scattering integral
well enough.

2. Prevent the triangular beam from turning non-convex. See
Figure 14-5.

3. Make sure that no volumetric light leaks through small scene
features.

14.3.5 BUILD TRIANGULAR BEAM VOLUMES

Run a geometry shader to pick up the tessellated water triangles and build the
triangulated hull of the corresponding triangular beam.

1. Project the 3D vertices of the incoming triangle to the (refracted)
caustics map space.

2. Read the 3D positions of the triangle that forms the top cap of the
volume from the caustics map.

195

RAY TRACING GEMS

3. Read the 3D positions of the triangle that forms the bottom cap
of the volume from the refracted caustics map.

4. Build the eight triangles that form the bounding volume. See
Figure 14-13. Optionally, do the same for volumes created by the
refracted caustics map and the one-bounce caustics map.

Positions from
Caustics Map

Positions from
Refracted Caustics Map

Figure 14-13. Triangles forming a triangular beam.

5. Compute an estimated thickness of the triangular beam at each
output vertex—this way, interpolated thickness is passed to the
vertex shader.

6. Compute a ray direction at every output vertex—this way, the
interpolated direction is passed to the pixel shader.

14.3.6 RENDER VOLUMETRIC CAUSTICS USING ADDITIVE BLENDING

Additively blend the in-scattered light on the pixels of the frontfacing sides of each
volume to a render target in the pixel shader.

1. Compute the phase function at the current 3D position given the
interpolated ray direction.

2. Multiply the resulting in-scattered term by the interpolated thickness.

3. Output the result.

196

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

14.3.7 COMBINE SURFACE CAUSTICS AND VOLUMETRIC CAUSTICS

14.4

This step combines the image of the scene that has been lit by the surface caustics
and a blurred version of the volumetric caustics that has been rendered using
additive blending.

1. Blur/denoise the surface caustics from step 3.

2. Use the denoised surface caustics buffer to shed light on the
scene, e.g., multiply it by the albedo texture of the G-buffer pixel
and add it to the unlit result to produce a lit G-buffer.

3. Blurthe result from step 6 slightly and add it to the lit G-buffer.

IMPLEMENTATION DETAILS

As described in Section 14.1, the DirectX 12 DXR APl is used to implement all ray
tracing workloads. For step 1, DispatchRays() is called so that each thread
traces exactly one refracted ray into the scene. The resulting refracted water mesh
is written to a buffer that is read by later steps and uses the same index buffer as
the original water mesh.

Step 2 is implemented as a normal rasterization pass. For step 3, DispatchRays()
is called to cast a ray for every valid pixel of the caustics map from step 2.
Optionally, the shader casts additional rays along the reflected direction for surface
caustics that are generated by light rays that get reflected by the water surface or
the one-bounce caustics map. Accumulation of refracted/reflected light happens in
a half-resolution buffer to facilitate fast denoising.

If an additional bounce of caustics is selected, yet another ray is cast in step 2 to
simulate the reflection of caustics rays by the scene. The resulting intersections of
these reflected rays are used to simulate indirect lighting through surface caustics
and are written to another caustics map, the reflected caustics map—the buffer is
sized to facilitate drawing volumetric beams for this additional bounce.

Volumetric caustics are accumulated in step 6 in a half-resolution buffer to speed
up the drawing of the triangular beams. The geometry shader in step 5 creates
triangular beams for the primary refracted caustics as well as for the optional
additional bounce recorded in the one-bounce caustics map.

Denoising of the surface caustics buffer in step 7 is done through a set of iterated
cross-bilateral blurring steps that account for differences in view-space depth,
normals, and positions. Finally, surface caustics and volumetric caustics are
upsampled bilaterally and get combined with the rendered scene.

197

RAY TRACING GEMS

14.5 RESULTS

Table 14-1 shows caustics workload timings taken in a scene for four different
camera positions and light setups on an NVIDIA RTX 2080 Ti board running
caustics workloads at a resolution of 1920 x 1080 using the official DXR API that is
part of DirectX 12.

Screenshots from these four scenes are shown in Figure 14-14. All scenes

run at interactive frame rates in excess of 60 FPS while casting rays from the
pixels of a 2048 x 2048 caustics map. The timings from Table 14-1 indicate

that volumetric caustics operate, in most cases, within a time span that is
acceptable for integration in a modern computer game. In comparison, the work
from Liktor and Dachsbacher [6] was not able to reach a performance level that
made integration into games feasible.

> The top left screenshot in Figure 14-14 shows a view from above the
water line. In this screenshot refracted volumetric underwater caustics
and reflected caustics that are visible above the water line are generated
by the algorithm described in this chapter. The caustics workloads for
this image amount to a total time of 2.9 ms.

> The top right screenshot in Figure 14-14 shows a view from below the
water line. For this scene refracted volumetric underwater caustics and a
secondary volumetric bounce of light are rendered. For this scenario the
volumetric bounce and high maximum tessellation factor preset cause the
timing for the volumetric part of the caustics rendering to climb to 4.6 ms.
These settings are currently too expensive to be used inside a game.

> The bottom left screenshot in Figure 14-14 shows again a view from below
the water line. For this scene again refracted volumetric underwater
caustics and a secondary volumetric bounce of light are rendered. For
this scenario, the second volumetric bounce along with a moderately high
maximum tessellation factor preset cause the timing for the volumetric
part of the caustics rendering to climb to a more moderate 2.1 ms. These
settings are probably acceptable within a game that focuses on high-
quality volumetric caustics.

> The bottom right screenshot in Figure 14-14 shows another view from
below the water line. For this scenario the second volumetric bounce
along with a moderately high maximum tessellation factor preset cause
the timing for the volumetric part of the caustics rendering to take only
1.4 ms. Please note how the second bounce of light casts light onto the
downward-facing part of the character.

198

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

Table 14-1. Timings. All DispatchRaysl] include accumulative scattering.

Timings
Screenshot Workload Time in ms
Top Left Refractive + Reflective Caustics
DispatchRays() 0.9
Surface Caustics Denoising 0.8
Volumetric Slicing and Upscaling 1.2
Top Right Refractive + Reflective Caustics + One-Bounce
DispatchRays() 3.0
Surface Caustics Denoising 0.8
Volumetric Slicing and Upscaling 4.6
Bottom Left Refractive + Reflective Caustics + One-Bounce
DispatchrRays() 0.9
Surface Caustics Denoising 0.8
Volumetric Slicing and Upscaling 2.1
Bottom Right = Refractive + Reflective Caustics + One-Bounce
DispatchRays() 2.1
Surface Caustics Denoising 0.8
Volumetric Slicing and Upscaling 1.4

Figure 14-14. Screenshots.

199

RAY TRACING GEMS

14.6

14.7

200

FUTURE WORK

In the current demo implementation, the caustics map and the refracted caustics
map need to have a resolution that is high enough to capture the underwater
geometry in enough detail. It would be interesting to investigate how ideas from
Wyman and Nichols [10] or Liktor and Dachsbacher [6] could be used to adaptively
cast rays.

Further on, instead of using the rasterization pipeline to slice the parts of the water
volume that concentrate light, it could be faster to accumulate in-scattered light in
a volumetric texture. For a position on a ray to the eye, the information stored in the
caustics map and the refracted caustics map could be used to prevent volumetric
light leaking through thin features of a scene.

DEMO

A demo that can be run on NVIDIA GPUs showcasing the proposed technique is
provided in the code repository.

REFERENCES

[1] Baboud, L., and Décoret, X. Realistic Water Volumes in Real-Time. In Eurographics Conference on
Natural Phenomena (2006), pp. 25-32.

[2] Ernst, M., Akenine-Méller, T., and Jensen, H. W. Interactive Rendering of Caustics Using
Interpolated Warped Volumes. In Graphics Interface (2005), pp. 87-96.

[3] Golias, R., and Jensen, L. S. Deep Water Animation and Rendering. https://www.
gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.
php, 2001.

[4] Hoobler, N. Fast, Flexible, Physically-Based Volumetric Light Scattering. https://
developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/
papers/NVVL/Fast_Flexible_Physically-Based_volumetric_Light_Scattering.
pdf, 2016.

[5] Hu, W., Dong, Z., lhrke, I., Grosch, T., Yuan, G., and Seidel, H.-P. Interactive Volume Caustics in
Single-Scattering Media. In Symposium on Interactive 3D Graphics and Games (2010), pp. 109-117.

[6] Liktor, G., and Dachsbacher, C. Real-Time Volume Caustics with Adaptive Beam Tracing. In
Symposium on Interactive 3D Graphics and Games (2011), pp. 47-54.

https://www.gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.php
https://www.gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.php
https://www.gamasutra.com/view/feature/131445/deep_water_animation_and_rendering.php
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/downloads/papers/NVVL/Fast_Flexible_Physically-Based_Volumetric_Light_Scattering.pdf

[71

[8]

[91

[10]

Qoo

RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

Shah, M. A, Konttinen, J., and Pattanaik, S. Caustics Mapping: An Image-Space Technique for
Real-Time Caustics. IEEE Transactions on Visualization and Computer Graphics 13, 2 (March 2007),
272-280.

Szirmay-Kalos, L., Aszodi, B., Lazanyi, |., and Premecz, M. Approximate Ray-Tracing on the GPU
with Distance Impostors. Computer Graphics Forum 24, 3 (2005), 695-704.

Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. An Efficient GPU-based Approach for
Interactive Global Illumination. ACM Transactions on Graphics 28, 3 (July 2009}, 91:1-91:8.

Wyman, C., and Nichols, G. Adaptive Caustic Maps Using Deferred Shading. Computer Graphics
Forum 28, 2 (Apr. 2009), 309-318.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do

not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder.

201

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J h PARTUIV
- 5. SAMPLING

PART IV

Sampling

Ray tracing is all about sampling, and sampling is the basic operation of computing
averages. Similarly to conducting a survey, it is important whom you ask, as this
determines how reliable your statistics will be.

Chapter 15, “On the Importance of Sampling,” takes you on a tour through some
useful integrals in graphics that are computed by averaging. You will learn why
sampling matters, how variance decreases and may be decreased, and why a
denoiser is becoming inevitable.

The journey then takes you to Chapter 16, the “Sampling Transformations Zoo.” We
will walk you through a collection of useful code snippets that let you transform
uniformly distributed samples according to a desired density or onto a piece of
geometry. It is the perfect complement for all the sampling tasks that you need to
complete when crafting your own rendering algorithm based on ray tracing.

Not everything turns out nice with sampling. And in fact, Chapter 17, “Ignoring the
Inconvenient When Tracing Rays,” will help you very much understand what can
go wrong with sampling. There is a simple way for you to fix things, and a second
alternative that at least does not destroy all rendering mathematics. All in all, this
chapter provides crucial and battle-proven insight.

As an example of how to put things together, Chapter 18, “Importance Sampling of
Many Lights on the GPU,” provides a fast implementation of a modern algorithm to
deal with illumination by many lights. This has been a classic challenge in
rendering movies that now enters the domain of real-time image synthesis. This
chapter is an excellent starting point for your own development.

There is so much more to learn about sampling. Do not forget to check out the
references to Monte Carlo and quasi-Monte Carlo integration in these sampling
chapters!

Alexander Keller

205

CHAPTER 15

On the Importance of Sampling

Matt Pharr
NVIDIA

ABSTRACT

With the recent arrival of ray tracing to the real-time graphics pipeline, developers
are faced with a new challenge: figuring out how to make the most of the rays that
they're able to trace. One important question to decide is for which lighting effects
to trace rays—choices include shadows, reflections, ambient occlusion, and full
global illumination.

Another important question is how to choose which rays to trace for the chosen
effect; an introduction to that question is the topic of this chapter. In the following,
we will see how most lighting calculations in rendering can be interpreted as
estimating the values of integrals and how tracing rays is a natural fit to an
effective numerical integration technique: Monte Carlo. Given some background

in Monte Carlo integration, we then see how well-chosen rays can dramatically
improve the speed of convergence, which in turn can either improve overall system
performance—by getting the same quality result for fewer rays—or improve image
quality—by getting lower error from the same number of rays.

15.1 INTRODUCTION

With the introduction of DirectX Raytracing (DXR) at the 2018 Game Developers
Conference and then the launch of NVIDIA's RTX GPUs in the summer of 2018,
ray tracing has unequivocally arrived for real-time rendering. This is one of the
greatest changes the real-time graphics pipeline has seen: after always offering
rasterization as the only visibility algorithm, now a second visibility algorithm has
been added—ray tracing.

Ray tracing and rasterization complement each other well. Rasterization remains

a high-performance way to perform coherent visibility computations: it assumes

a single viewpoint [possibly a single homogeneous viewpoint, for an orthographic
view), and it regularly samples visibility over a pixel grid. Together, these properties
allow high-performance hardware implementations that amortize per-triangle
work over multiple pixels and incrementally compute depth and coverage from
pixel to pixel.

© NVIDIA 2019 207
E. Haines, T. Akenine-Moller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_15

RAY TRACING GEMS

15.2

208

In contrast, ray tracing allows fully incoherent visibility computations. Each
ray traced can have an arbitrary origin and direction; the hardware places no
restrictions on them.

With ray tracing in hand, the task for developers is to figure out how best to use

it. GPU ray tracing hardware provides a few visibility primitives: “What is the first
thing visible from this point in this direction?” “Is there anything blocking the
straight line segment between these two points?” However, it does not dictate how
it should be used for image synthesis—it is up to developers to decide how to do
that. In a sense, the situation is similar to programmable shading on GPUs: the
hardware provides the basic computational capabilities, and it is up to developers
to decide the best way to use those for their applications.

To help motivate some of the trade-offs involved in choosing which rays to trace, we
start by looking at a basic ambient occlusion computation through the lens of Monte
Carlo integration. We will see how different sampling techniques (and thus different
rays traced) lead to different amounts of error in the results before moving on to see
the application of some of these ideas to direct illumination from area light sources.

Sampling well for rendering is a complex topic—whole books have been written
on the topic and it remains an active area of research. Thus, this chapter can only
scratch the surface of the topic, but it includes pointers to resources that provide
more information along the way.

EXAMPLE: AMBIENT OCCLUSION

Most computations related to light and reflection and graphics can be understood
as integration problems: for example, we integrate the product of incident light
arriving at all directions over the hemisphere at a point with the bidirectional
scattering distribution function (BSDF) that describes reflection at the point in
order to compute reflected light from a surface.

Monte Carlo integration has been shown to be an effective method for these
integration tasks in rendering. It is a statistical technique based on taking a
weighted average of random samples of the integrand. Monte Carlo is a good
choice for rendering because it works well with high-dimensional integrals (as
we end up encountering with global illumination), places few restrictions on the
functions to which it can be applied, and only requires point-wise evaluation of
them. See the book by Sobol [5] for an approachable introduction to the topic.

Sampling is a perfect fit for ray tracing—it corresponds directly to queries like
“is the light source visible in this direction?”or “what is the first visible surface in
this direction?”

ON THE IMPORTANCE OF SAMPLING

Here is the definition of the basic Monte Carlo estimator with k samples, which gives
a method for computing an approximation to an n-dimensional integral of some
function f:

£/ 0|~/ 1) e g

On the left-hand side of the equality, we have E, which denotes the expected value;
the idea is that it indicates that, statistically, the quantity in square brackets is
expected to take on the value of the expression on the right-hand side. Sometimes
it may be larger and sometimes it may be smaller, but we can imagine that in the
limit of more and more values, we expect its average to converge.

The expression inside the square brackets is an average of values of f using a set
of independent random variables X; that take on all values in [0, 1]” with uniform
probability. In an implementation, each X; might just be an n-dimensional random
number, but here, writing the Monte Carlo estimator in terms of random variables
is what allows rigorous discussion of the expected value.

We have now an easy-to-implement way to estimate the value of any integral. Let
us apply it to ambient occlusion, a useful shading technique that gives a reasonable
approximation to some global lighting effects. We define the ambient occlusion
function a at a point P as

a(P) :%,/;2 vd(a)) cos @ dw, (2)

where v, is a visibility function that is zero if a ray from P in the direction w is
occluded at a distance less than d and one otherwise, where Q denotes the
hemisphere of directions around the surface normal at P, and where the angle 6 is
measured with respect to the surface normal. The 1 term ensures that the value
of a(P) is between zero and one. n

Consider now the application of the basic Monte Carlo estimator to ambient
occlusion. Here, we integrate over the hemisphere rather than a [0, 1)” domain,
but it is not too hard to use a few changes of variables to show that the estimator
applies to other integration domains as well. Our estimator is

k
a(P):E{%;%vd(a),) cos@/}, (3)

where w; are random directions over the hemisphere, each one chosen with
uniform probability.

209

RAY TRACING GEMS

There is a straightforward recipe for choosing directions with this distribution over
the hemisphere. Given random numbers & and &, in [0, 1), the following then gives
us a direction over the hemisphere centered around the direction (0, 0, 1) (thus, the
direction would then need to be transformed to a coordinate frame with the z-axis
aligned with the surface normal):

(x. v, 2) =(1/1—§f cos(2né,), \[1-& sin(2n¢&,), 51). (4)

Figure 15-1 shows a crown model shaded using ambient occlusion, using four
samples for the estimator. With just four samples and no denoising, the result is
naturally noisy, but we can see that it looks like it is heading in the right direction.

Figure 15-1. Crown model rendered with ambient occlusion. Left: we traced four random rays per
pixel, uniformly distributed over the hemisphere at the visible point. Right: a reference image of the
converged solution was rendered with 2048 rays per pixel.

Another Monte Carlo estimator allows random samples to be taken from
nonuniform probability distributions. Here is its definition:

Zk:—l z'/go, g f(X) dx. (5)

210

ON THE IMPORTANCE OF SAMPLING

The idea is that now the independent random variables X; are distributed according
to some possibly nonuniform distribution p(x). Due to the division by p(X], everything
works out: when we are more likely to take samples in some part of the domain,
plX) is relatively large and the contribution of those samples is reduced. Conversely,
choosing a sample with a low probability will happen less frequently than it would
with uniform sampling, but those samples contribute more since their p(X] value is
relatively small. Note that in our example no samples will have p(X] = 0.

Why might we want to sample nonuniformly like this? We can see why by
considering ambient occlusion again. There is a sampling recipe that takes cosine-
distributed samples on the hemisphere (again, centered around (0, 0, 1)):

(X, v, z) :(\/acos(anz), \/asin(mez), ﬁ) (6)

Again, it takes two independent uniform random samples &; and &,, each in
[0, 1), and transforms them. It turns out that plw) = cos 8/z, where the 7 term is
necessary for normalization.

Pulling it all together, we have the following estimator for the ambient occlusion
integral if we use cosine-distributed samples w;:

)€l 1 E I 15 o) .

~n cosf /n p

Because we could generate rays with probability exactly proportional to cosé,
the cosine terms cancel out. In turn, every ray that we sample has the same
contribution to the estimate—either zero or one.’

The implementation is straightforward:

1 float ao(float3 p, float3 n, int nSamples) {

2 float a = 0;

3 for (int i = 0; i < nsamples; ++i) {

4 float xi[2] = { rngQ, rngQ };

5 float3 dir(sqrt(xi[0]) * cos(2 * Pi * xi[1]),
6 sqrt(xi[0]) * sin(2 * Pi * xi[1l]),
7 sqrt(l - xi[0]));

8 dir = transformToFrame(n, dir);

9 if (visible(p, dir)) a += 1;

10 }
11 return a / nSamples;
12 }

'If you have implemented screen-space ambient occlusion, it is likely that you are already using this approach,
though perhaps now it is easier to understand why it is worth doing so.

211

RAY TRACING GEMS

212

Figure 15-2 shows the crown model again, now comparing uniform sampling to
cosine-distributed sampling. Cosine-distributed sampling has visibly lower error.
Why might this be?

Figure 15-2. Crown model rendered with ambient occlusion: uniform sampling [left] and cosine-
weighted sampling (right). Both used four rays per pixel. Cosine-weighted sampling has nearly 30% lower
average pixel error than uniform sampling, which is reflected in its image having noticeably less noise.

With uniformly distributed sampling, some of the rays turn out to have an
insignificant contribution. Consider a ray close to the horizon: its value of cosé will
be close to zero, and effectively, we learn little by tracing the ray. Its contribution
to the sum in the estimator will either be zero or minimal. Put another way, we do
just as much work to trace those rays as all the other rays, but we do not get much
out of them. The difference in the amount of computation required to sample rays
between the two techniques is negligible, so there is no reason not to use the more
effective sampling technique.

This general technique, sampling from a distribution that is similar to the
integrand, is called importance sampling and is an important technique for efficient
Monte Carlo integration in rendering. The closer a match p(x] is to f(x], the better
the results. However, if p(x) does not match f(x] well, error will increase as the
encountered ratios f(x)/plx) oscillate between minuscule and huge values. As long
as p(x) > 0 whenever f(x) # 0, the result will still be correct in the limit, though the
error may be high enough for that to be a small consolation.

ON THE IMPORTANCE OF SAMPLING

15.3 UNDERSTANDING VARIANCE

A concept called variance is useful for characterizing the expected error in Monte
Carlo integration. The variance of a random variable X is defined in terms of
another expectation:

v[x]= E[(X—E[X])z} =[x]-£[xT. (8)

Variance is thus a measure of the squared difference between a random variable
and its expected value [i.e., its average). In other words, if a random variable has low
variance, then most of the time its value is close to its average (and the converse if
variance is high).

If we can accurately compute the expectation of a random variable [e.g., using
Monte Carlo integration with a large number of samples), we can compute an
estimate of the variance directly using Equation 8.

We can also estimate the variance: given a number of independent values of a
random variable, we can compute the sample variance from them using Equation 8
with a small adjustment. The following code illustrates the computation:

1 float estimate_sample_variance(float samples[], int n) {
2 float sum = 0, sum_sq = 0;

3 for (int i =0; i < n; ++1) {

4 sum += samples[i];

5 sum_sq += samples[i] * samples[i];

6 3

7 return sum_sq / (n - 1) -

8 sum * sum / ((nh - 1) * n);

91}

Note that it is not necessary to store all the samples: sample variance can also
be computed incrementally by keeping track of the sum and squared sum of the
values of the random variable and the total number of samples.

One challenge with the sample variance is that it has variance itself: if we happened
to have a number of similar sample values even though the underlying estimator had
high variance, we would compute a much-too-low estimate of the sample variance.

Variance is a particularly useful concept in Monte Carlo integration, as there is a
fundamental relationship between variance and the number of samples taken:
for random samples, variance decreases linearly with the number of samples taken.?

%Variance can decrease even faster with certain carefully constructed sampling patterns, especially if the
integrand is smooth, though we ignore that for the discussion here.

213

RAY TRACING GEMS

214

Thus, the good news is that if we would like to cut the variance in half, we can
expect that taking twice as many samples [i.e., tracing twice as many rays]) will do
just that. Unfortunately, since variance is effectively squared error, that means that
cutting error in half requires four times as many samples.

This relationship between variance and the number of samples taken helps explain
a few things about interactive ray tracing. On one hand, it helps us understand why
images improve so much going from one sample per pixel to two, and then to three
and more. It is easy to double the number of samples when you have only taken
one, and we know that doing so will cut variance in half.

On the other hand, this property also explains why more rays are not always the
solution: if we have traced 128 rays in a pixel and still have 2x more variance than
we would like, we need 128 more of them to take care of that. It gets even worse if
one has an image with thousands of samples per pixel that is still noisy! It is easy to
see the value of denoising algorithms in this light; they are a much more effective
way to take care of lingering noise than more rays once a reasonable number of
rays have been traced.

We computed the average sample variance of all the pixels in the crown
renderings. The image of ambient occlusion with uniformly sampled directions
(Figure 15-2, left) has an average variance of 0.0972, and the image with
cosine-weighted directions (Figure 15-2, right] has average variance 0.0508.

The ratio between these variances is approximately 1.91. Thus, we can expect
that if we trace 1.91x more rays with uniform sampling than with cosine-weighted
sampling, we will get results of roughly equal quality.

We traced four rays per intersection before. Figure 15-3 shows that having

1.91 x 4 ~ 8 uniformly distributed directions at each intersection gives similar
results to using four cosine-weighted directions. The images appear to have
similar quality, and the image with eight uniformly sampled directions per pixel
has average pixel variance of 0.0484, which is just slightly better than with four
cosine-weighted rays.

ON THE IMPORTANCE OF SAMPLING

Figure 15-3. Because variance decreases linearly with sample count, we can accurately estimate how
many more samples will be necessary to reduce measured variance a certain amount. We compare the
crown with eight uniformly distributed samples [left] and four cosine-distributed samples [right). The
variance in both images is nearly the same, even though the one on the right required tracing half as
many rays.

Estimates of variance can also be used to adjust filter kernel widths when
denoising: where the variance is low, then not much filtering is needed, but where
itis high, a wide filter is likely a good idea. The earlier caveats about the variance
in estimates of sample variance apply here: in practice, it is usually a good idea to
filter the variance estimates across a group of nearby pixels or temporally over
multiple frames in order to reduce the error in the variance estimate.

Estimates of variance can also be a good guide for adaptive sampling algorithms, in
which we are trying to decide where more rays should be traced. Indeed, if we can
choose the pixels with the highest ratio of variance to number of samples already
taken, then we know that we are getting the most out of our additional rays: given
the linear decrease in variance with more rays, those rays will have the greatest
impact on variance reduction across the whole image.®

%It turns out that driving adaptive sampling based on sampled values like this causes the Monte Carlo estimator to
become biased [3], which means that it does not converge in quite the way that we have described so far. The root
issue is essentially that error in the estimated sample variance is not the true error.

215

RAY TRACING GEMS

15.4

216

DIRECT ILLUMINATION

Another important integral in rendering comes from the surface scattering equation,
which gives the scattered radiance at a point Pin a direction w, due to the incident
radiance function L;(P,@) and the BSDF f(low — w.):

L, (P, a)a) =/L,(P, w)f(w—) a)g) cosddw. 9)

In this section, we consider the effect of a few different sampling choices when
estimating the value of this integral and measure their effect on variance.

Ideally, we would like to be able to sample directions w proportionally to the value
of the product of L;, f, and cos@. In general, this is difficult to do, especially because
the incident radiance function generally is not available in closed form—we need to
trace rays to evaluate it.

Here, we make a few simplifications. First, we only consider the incident light from
emitters in the scene and ignore indirect illumination. Second, we only look at

the effect of various choices in sampling proportional to ;. Note that the second
simplification absolutely should not be used in practice: it is imperative to also
sample from the BSDF and to use a powerful variance reduction technique called
multiple importance sampling to weight the samples [6].

With those simplifications, we are left with the task of computing the value of the
following Monte Carlo estimator:

1k L,(P, a),.) f(a),. - 0’0) cosé,

kz

= P (a)/) ‘

L,(P, a)o) =F (10)

where the w; have been sampled from some distribution p(w). Note that if we only
consider direct illumination, there is no reason to sample a direction that definitely
does not intersect a light source. Thus, a reasonable strategy is to sample according
to a distribution over the surface of the light, to choose a point on the light source,
and then to set the direction w; as the direction from P to the sampled point.

ON THE IMPORTANCE OF SAMPLING

For a spherical emitter, a straightforward approach is to sample points over the
entire surface of the sphere. The following recipe takes a pair of uniform samples
& and & and uniformly samples points on the unit sphere at the origin:

z=1-2¢&,
x =\1-2 cos(2n&,). (11)
y=~1- sin(2n§2).

Figure 15-4 shows how this approach works in a two-dimensional setting. A
problem is evident: more than half of the circle is not visible to a point outside

of it, and thus all the samples taken on the backside of the circle with respect to
the point lead to wasted rays, because other parts of the circle will occlude the
sampled points from the point P. The analogous case is true in three dimensions.

P

Figure 15-4. When sampling points on a spherical light source [yellow circle], at least half of the
sphere as seen from a point P outside the sphere is occluded. Sampling points uniformly over the
surface of the sphere, as shown here, is inefficient because all the samples on the back side of the
sphere are occluded by other parts of the sphere and thus are not useful.

A better sampling strategy is to bound the sphere with a cone from the point P and
uniformly sample within the cone to choose points on the sphere. Doing so ensures
that all the samples are potentially visible to the point (though they still may be
occluded by other objects in the scene.] The recipe for sampling uniformly in a cone
with angle @ is given in Chapter 16, “Sampling Transformations Zoo,” but we repeat
it here:

cosH’:(1—§1)+§1c059,

12
4= 2ms, (12)

217

RAY TRACING GEMS

218

where @' is an angle measured with respect to the cone axis with range [0, 6)
and ¢ is an angle between 0 and 2z that defines a rotation around the cone axis.
Figure 15-5 illustrates this technique.

P

Figure 15-5. /f we compute the angle 0 of a cone that bounds a spherical emitter as seen from a point
P, then if we sample directions within the cone with uniform probability, we can sample points on the
emitter [black dots] that are not on the back side of it with respect to P.

The improved sampling strategy makes a big difference; images are shown in
Figure 15-6. With four rays per pixel, the average pixel variance when sampling

the spherical emitters uniformly is 0.0787. Variance is 0.0248, or 3.1x lower, when
sampling the cone. As we saw with ambient occlusion, equivalently we can say that
3.1x more rays would need to be traced to generate a result with the same quality if
uniform sampling was used rather than sampling within the cone.

ON THE IMPORTANCE OF SAMPLING

Figure 15-6. White Room scene at nighttime, with two spherical light sources, rendered with four
samples per pixel. Top: uniform sampling of the spherical light sources. Bottom: sampling within the
cone subtended from each point being illuminated. Variance is 3.1x lower in the bottom image for the
same number of rays traced, thanks to a better sampling method being used. (Scene courtesy of Jay
Hardy, under a CC-BY license.)

As a last example, we show that choosing which light to sample makes a big
difference with variance as well.

Given a scene with two light sources, such as White Room, the natural thing to do is to
trace half of the rays to one light and half to the other. However, consider a point close
to one of the two light sources (e.g., on the wall above the floor lamp on the right]. It is
visually evident that the light source on the ceiling does not contribute as much light to
the wall as the light source right next to it. In turn, that means that rays traced to the
ceiling light will have a much lower contribution than rays traced to the closer light—
exactly the same situation as with ambient occlusion and rays close to the horizon.

219

RAY TRACING GEMS

If we instead choose which light to sample according to a probability that accounts
for its distance to the receiving point and the emitted power, variance is further
reduced.* Figure 15-7 shows the results. Adapting the probability of sampling lights
to their estimated contribution makes another significant improvement: average
pixel variance is 0.00921, which is a 2.7x reduction from sampling lights with
uniform probability (which had average pixel variance of 0.0248). Together, these
two sampling improvements reduced variance by an overall factor of 8.5x.

Figure 15-7. White Room scene at nighttime, comparing different approaches of choosing which light
to sample for illumination. Top: lights are sampled with uniform probability. Bottom: lights are sampled
with probability proportional to an estimate of the illumination that they cast at the point where
reflection is being computed. Variance is reduced by 2.7x by the latter technique. (Scene courtesy of
Jay Hardy, under a CC-BY license.)

“See Conty Estevez and Kulla's paper [1], which describes the algorithm we implemented here, as well as
Chapter 18, “Importance Sampling of Many Lights on the GPU,” where this topic is explored in detail.

220

159.5

ON THE IMPORTANCE OF SAMPLING

CONCLUSION

We hope that this chapter has left the reader with a basic understanding of the
importance of the details of sampling and, more importantly, an understanding

of why it is worth sampling well. It is easy to sample inefficiently, but it is not that
much harder to sample well. We showed instances of reductions in variance by
factors ranging from nearly 2x to 8.5x, purely thanks to more careful sampling and
tracing more useful rays.

Given the connection between variance and sample count, another way to look at
these results is that if you do not sample well, it is more or less the same as having a

GPU that is running at % to % of the actual performance it offers!

This chapter only scratched the surface of how to sample well in ray tracing; for
example, we did not discussed how to sample according to the distributions defined
by BSDFs or how to apply multiple importance sampling, an important variance
reduction technique. See Chapter 28, “Ray Tracing Inhomogeneous Volumes”;
Chapter 18, “Importance Sampling of Many Lights on the GPU"; and Chapter 16,
“Sampling Transformations Zoo,” in this volume for more information on these
topics. Furthermore, we did not discuss the substantial error reduction that can be
achieved from using more uniformly distributed samples; see Keller’s survey [2] for
more information about one such approach. Another useful resource for all these
topics is the book Physically Based Rendering [4], which is now freely available in an
online edition.

REFERENCES

[11 Conty Estevez, A., and Kulla, C. Importance Sampling of Many Lights with Adaptive Tree Splitting.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1-25:17.

[2] Keller, A. Quasi-Monte Carlo Image Synthesis in a Nutshell. In Monte Carlo and Quasi-Monte Carlo
Methods 2012. Springer, 2013, pp. 213-249.

[3] Kirk, D., and Arvo, J. Unbiased Sampling Techniques for Image Synthesis. Computer Graphics
(SIGGRAPH] 25, 4 (1991), 153-156.

[4] Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation, third ed. Morgan Kaufmann, 2016.

[5] Sobol, I. M. A Primer for the Monte Carlo Method. CRC Press, 1994.

[6] Veach, E., and Guibas, L. J. Optimally Combining Sampling Techniques for Monte Carlo
Rendering. In Proceedings of SIGGRAPH (1995), pp. 419-428.

221

RAY TRACING GEMS

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

222

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 16

Sampling Transformations Zoo

Peter Shirley, Samuli Laine, David Hart, Matt Pharr, Petrik Clarberg,
Eric Haines, Matthias Raab, and David Cline

NVIDIA
PO 2
o 0% @ s o /
" (W4 ®
Yag .‘ .‘ .”; /
\&‘..‘ .. .:"//
N\ e %,/
S e
ABSTRACT

We present several formulas and methods for generating samples distributed
according to a desired probability density function on a specific domain.

Sampling is a fundamental operation in modern rendering, both at runtime and

in preprocessing. It is becoming ever more prevalent with the introduction of ray
tracing in standard APIs, as many ray tracing algorithms are based on sampling by
nature. This chapter provides a concise list of some useful tricks and methods.

16.1 THE MECHANICS OF SAMPLING

A common task in ray tracing programs is to choose a set of samples on some
domain with an underlying probability density function (PDF): for example, a set

of points on the unit hemisphere whose probability density is proportional to the
cosine of the polar angle. This is often accomplished by taking a set of samples that
are uniform on the unit hypercube and transforming them to the desired domain.
For readers unfamiliar with this general sample-generation pipeline, please refer
to Chapter 13 of Pharr et al. [8].

This chapter catalogs a variety of methods to generate specific distributions
that the authors have found useful in ray tracing programs. These are all either
previously published or are part of the “conventional wisdom.”

© NVIDIA 2019 223
E. Haines, T. Akenine-Moller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_16

RAY TRACING GEMS

16.2

224

INTRODUCTION TO DISTRIBUTIONS

In one dimension, there is a fairly standard way to create a transform that will
generate samples with the desired PDF p. The key observation behind this method
uses a construct called the cumulative distribution function (CDF), usually denoted
with a capital P(x):

P(x) =probability that a uniformly distributed sample v < X:/X p(y)ay. (]

To see how this function can become useful, suppose that we want to determine
where a particular uniformly distributed value u = 0.5 will go when passed through
our desired warping function g : x = g(0.5). If we assume that g is nondecreasing

(so its derivative is never negative], then half of the points will map to values of x
less than g(0.5) and the other half to values of x greater than g(0.5). Because of the
intrinsic property of CDFs, when P(x] = 0.5 we also know that half of the area under
the PDF is to the left of that x, so we can deduce that

P(9(0.5))=0.5. (2)
This basic observation actually works for any x in addition to x = 0.5. Thus, we have
9(x)=F"(x). (3)

where P is the inverse function of P. The notation of inverse functions can be
confusing. In practice what it means algebraically is that given a PDF p we integrate
it using the integral in Equation 1, and then we solve for x in the resulting equation
(which is inverting P):

u:P(x).

Given a sequence of uniformly distributed samples u, we compute the inverse of P
to find a p-distributed sequence of samples x.

For two-dimensional domains, two uniformly distributed samples are needed,
ul0] and u[1]. These together give a point on the two-dimensional unit square:
(ul0],ul1]) € [0, 1)2. They can also be transformed to a desired domain.

SAMPLING TRANSFORMATIONS Z0O

For example, to pick a uniformly distributed sample on a unit disk, we would
write down an integral in polar coordinates with a measure dA = rdrdg, where r
represents a distance (radius) from the origin along the angle ¢ from the positive
x-axis. When possible in 2D domains, the two dimensions are separated into two
independent 1D PDFs, and terms such as the rin the measure need to be handled

carefully. Although a uniform p(r, go) =l for uniform density on the unit disk,
V4

when separated into two 1D independent densities, the ris attached to the density
of the radius. The resulting two 1D PDFs are

1
'01((0):5' pz(f')=2/'. (4)

The constant terms ZL and 2 make each of the PDFs integrate to 1 (a required
V4

property of PDFs as discussed earlier). If we find the CDFs for those two PDFs,
we get

Alo)=- Alr)=r. (5

If we want to transform uniform samples u[0] and u[1] to respect those CDFs, we
can apply Equation 2 to each 1D CDF:

(ul0], ul1]) = (Zﬂ /’2). (6]

T

and then solve each for ¢ and r, yielding

(¢.r)=(27ut0], Julll). (7)

This basic “playbook” is used for most of the transforms found in the literature.

An important note is that, while our treatment assumes that (u[0], u[1]]) are uniform
on a unit square, in a higher-dimension d the points are uniformly distributed in
the unit hypercube [0, 1)%. Such samples can be generated by (pseudo-Jrandom or
quasi-random methods [6].

The rest of this chapter gives several transforms, usually without derivation and
most of them in two dimensions, that we have found to be useful in ray tracing
programs.

225

RAY TRACING GEMS

16.3
16.3.1

16.3.2

226

ONE-DIMENSIONAL DISTRIBUTIONS
LINEAR

Given the linear function over [0, 1] with f(0) = a and f(1) = b and given a uniformly
distributed sample u, the following generates a value x € [0, 1] distributed
according to f:

1 float SampleLinear(float u, float a, float b) {
2 if (a == b) return u;

3 return clamp((a - sqrt(lerp(u, a * a, b * b))) / (a - b), 0, 1);
4}

The value of the PDF of a sample x can be found by the following:

14if (x <0 || x > 1) return 0;
2 return lerp(x, a, b) / ((a + b) / 2);

TENT

—r 0 +r

A non-normalized tent function is specified by a width r and is defined by a pair
of linear functions: it goes linearly from 0 at —r to a value of 1 at the origin, and
then back down to 0 at . The SampleLinear() function in the following code
implements the technique described in Section 16.3.1:

14f (u < 0.5 {

2 u /= 0.5;

3 return -r * SampleLinear(u, 1, 0);
4 } else {

5 u= (- .5 /.5

6 return r * SampleLinear(u, 1, 0);
7}

16.3.3

SAMPLING TRANSFORMATIONS Z0O

Note that we use the uniformly distributed sample u to choose one half of the tent
function and then remap the sample back to [0, 1) to sample the appropriate linear
function.

The PDF for a value sampled at x can be computed as follows:

1 1if (abs(x) >= r) return 0;
2 return 1 / r - abs(x) / (r * r);

NORMAL DISTRIBUTION

The normal distribution is defined as

(x=a) | (8)

207

f(x) =exp| -

It has infinite support but falls off quickly once ||x - p|| is a few multiples of a. It is
not possible to analytically generate a single sample from this distribution, since
doing so requires inverting the error function,

erf(x) = %/Oxe‘x2 adx, (9)

which is not feasible in closed form. One option is to use a polynomial
approximation of the inverse, which we take to be implemented by ErfInv(). Given
that, a sample can be generated as

1 return mu + sqrt(2) * sigma * ErfInv(2 * u - 1);
The PDF for a sample x is then given by
1 return 1 / sqrt(2 * M_PI * sigma * sigma) *
2 exp(-(x - mu) * (x - mu) / (2 * sigma * sigma));

If more than one sample is needed, the Box-Muller transform generates two
samples from the normal distribution, given two uniformly distributed samples:

1 return { mu + sigma * sqrt(-2 * Tog(1-u[0])) * cos(2*M_PI*u[l]),
2 mu + sigma * sqrt(-2 * log(1-u[0])) * sin(2*M_PI*u[1l])) };

227

RAY TRACING GEMS

16.3.4

16.3.4.1

228

SAMPLING FROM A ONE-DIMENSIONAL DISCRETE DISTRIBUTION

Given an array of floating-point values, there are a few ways to choose one of them
with a probability proportional to its relative magnitude. We present two methods
here: one is better if only a single sample is needed, and the other is better if
multiple samples are needed.

JUST ONCE

If only a single sample is needed, then the function in the following code can

be used. It computes the sum of the values (expecting that all are nonnegative)
and then scales the provided uniformly distributed sample u, remapping it from
the [0, 1) domain to [0; sum). It then walks through the array, subtracting each
array element’s value from the remapped sample. Once it gets to the point that
subtracting the next value would make the scaled value negative, it has found the
right place to stop.

This function also returns the PDF for choosing an element as well as a remapped
sample value in [0, 1) based on the original sample value. Intuitively, there is still a
uniform distribution left in the sample, because we used it to make only a discrete
sampling decision. However, the number of uniformly distributed bits left may be
too small for the sample to be reused, especially if the selected event has a tiny
probability.

1 int sampleDiscrete(std::vector<float> weights, float u,

2 float *pdf, float *uRemapped) {

3 float sum = std::accumulate(weights.begin(), weights.end(), 0.f);

4 float uScaled = u * sum;

5 int offset = 0;

6

7

8

while (uScaled > weights[offset] & offset < weights.size()) {
uscaled -= weights[offset];

++offset;
9 B
10 if (offset == weights.size()) offset = weights.size() - 1;
11
12 *pdf = weights[offset] / sum;
13 *uRemapped = uScaled / weights[offset];
14 return offset;
15 }

SAMPLING TRANSFORMATIONS Z0O

16.3.4.2 MULTIPLE TIMES

b-————-——--—-9
p--——-----9
p--—--—---9
b-———-——-—-—-9

- —————4
p——————4
- - ————4

b - - -4
b ---4

If an array needs to be sampled more than once, it is much more efficient to
precompute the array’s CDF and perform a binary search for each sample. Care
must be taken to distinguish between piecewise constant and piecewise linear
data, as the CDF computation and sampling are different for each. For example, to
sample from a piecewise constant distribution, we would use the following:

1 vector<float> makePiecewiseConstantCDF(vector<float> pdf) {
2 float total = 0.0;

3 // CDF is one greater than PDF.

4 vector<float> cdf { 0.0 };

5 // Compute the cumulative sum.

6 for (auto value : pdf) cdf.push_back(total += value);

7 // Normalize.

8 for (auto& value : cdf) value /= total;

9 return cdf;

10 }

11

12 int samplePiecewiseConstantArray(float u, vector<float> cdf,
13 float *uRemapped)

14 {

15 // Use our (sorted) CDF to find the data point to the
16 // left of our sample u.

17 int offset = upper_bound(cdf.begin(), cdf.end(), u) -
18 cdf.begin() - 1;

19 *uRemapped = (u - cdf[offset]) / (cdf[offset+1l] - cdf[offset]);
20 return offset;

21}

For sampling a piecewise linear distribution, the CDF can be constructed by
computing the area of the trapezoid between each pair of samples. Sampling the
distribution involves sampling from the linear segment using the SampleLinear()

229

RAY TRACING GEMS

function from Section 16.3.1, after the binary search. If using C++, the Standard
Template Library’s random module introduced piecewise_constant_
distribution and piecewise_linear_distributionin C++11.

16.4 TWO-DIMENSIONAL DISTRIBUTIONS
16.4.1 BILINEAR

T 113

It can be useful to sample from the bilinear interpolation function, which we define as
taking four values v[4] that define a function over [0, 112 by

f(xy)= ((1—x)(1—y)) vI0]+ x(1- y) v+ (1-x) yvI2]+ xyv[3]. (10)

Then, given two uniformly distributed samples u[0] and u[1], a sample can be
taken from the distribution f(x,y) by first sampling one dimension and then
sampling the second. Here, we use the one-dimensional linear sampling function,
SampleLinear(), defined in Section 16.3.1:

// First, sample in the v dimension. Compute the endpoints of
// the 1ine that is the average of the two lines at the edges
// at u=0and u = 1.

float vO = v[0] + v[1], vl = v[2] + v[3];

// Sample along that Tine.

p[1] = sampleLinear(u[1], vO, v1);

// Now, sample in the u direction from the two line endpoints
// at the sampled v position.

O NO UV A WN R

9 p[0] = sampleLinear(ul[0],

10 Terp(p[1], v[0], v[2D),
11 Terp(p[1], v[1], v[31));
12 return p;

The PDF of a sampled value p is the following:

1 return (4 / (v[0] + v[1] + v[2] + v[3])) * Bilerp(p, V);

230

SAMPLING TRANSFORMATIONS Z0O

16.4.2 ADISTRIBUTION GIVEN ATWO-DIMENSIONAL TEXTURE
16.4.2.1 REJECTION SAMPLING

To choose a texel in a texture with probability proportional to the texel’s brightness,
one simple technique is to use rejection sampling, where texels are uniformly
chosen and a sample is accepted only if the texel’s brightness is greater than
another uniformly distributed value:

1 do {
2 X =uQ;
3 Y =uQ;

4 } while (u(Q) > brightness(texture(X,Y))); // Brightness is [0,1].

Note that the efficiency of rejection sampling a texture is proportional to the
texture’s average brightness, so if performance is a concern, avoid this method for
sparse [mostly dark) textures.

16.4.2.2 MULTI-DIMENSIONAL INVERSION METHOD

To sample a texture in two dimensions, we can build on Section 16.3.4.2 (sampling
from a one-dimensional array) by sampling from two distributions, vertical and
horizontal:

> Build CDF tables (cumulative distribution) of brightness, one for each row of
pixels, and normalize.

> Build a CDF for the last column (the sum of brightness across each row) and
normalize.

231

RAY TRACING GEMS

> To sample from the texture’s distribution, take a uniform two-dimensional
sample (u[0], u[1]). Use ul1] to binary-search the column CDF. This
determines which row to use. Now, use u[0] to binary-search the row to
find the sample’s column. The resulting coordinates (column, row) are
distributed according to the texture.

The drawback of this inversion method is that it does not preserve stratification
properties of the sample points (e.g., blue noise or low-discrepancy points] well.
If this is an issue, it is preferable to sample hierarchically in two dimensions, as
described next.

16.4.2.3 HIERARCHICAL TRANSFORMATION

232

Hierarchical warping is a way to improve on the shortcomings of the inverse
transform sampling described in the previous section, namely that the row- and
column-based inverse transform mapping may cause samples to be clustered. We
note in advance that hierarchical warping does not completely solve the problems
of continuity and stratification, especially when using correlated samples, e.g., blue
noise or low-discrepancy sequences, but it is a practical way to have some spatial
coherence while sampling a texture. Example applications of hierarchical warping
include importance sampling methods for complex light sources [3, 71.

The principle is to build a tree of conditional probabilities, where at each node

we store the relative importance of the node’s children. Sampling is performed

by starting from the root and at each node probabilistically deciding which child
node to select based on a uniformly distributed sample. Rather than drawing a
new uniform sample at each level, the algorithm both gets more efficient and
generates better distributions if the uniform sample is remapped at each step. See
illustrations of generated sampling probabilities in the article by Clarberg et al. [2].

SAMPLING TRANSFORMATIONS Z0O

This method is not limited to sampling discrete distributions in two dimensions.
For example, the tree can be a binary tree, quad tree, or octree, depending on the
domain. The following pseudocode illustrates the method for a binary tree:

1 node = root;

2 while (!node.isLeaf) {

3 if (u < node.probLeft) {
4 u /= node.probLeft;
5 node = node.left;
6 } else {

7 u /= (1.0 - node.probLeft);
8 node = node.right;

9

3
10 // ok. we have found a Teaf with the correct probability!

For two-dimensional textures, the implementation becomes particularly simple,
as we can sample based on the texture’'s mipmap hierarchy directly. Starting at the
2 x 2 texel mipmap, the conditional probabilities are computed based on the texel
values, first horizontally and then vertically. The best final distribution is achieved
with a two-dimensional uniformly distributed sample:

1 int2 sampleMipMap(Texture& T, float u[2], float *pdf)

2 {

3 // Iterate over mipmaps of size 2x2 ... NxN.

4 // load(x,y,mip) Toads a texel (mip 0 is the largest power of two)
5 int x =0, y = 0;

6 for (int mip = T.maxMip()-1; mip >= 0; --mip) {

7 X <<= 1; y <<= 1;

8 float left = T.load(x, y, mip) + T.load(x, y+1, mip);

9 float right = T.load(x+1, y, mip) + T.load(x+1l, y+1, mip);
10 float probLeft = left / (left + right);
11 if (u[0] < probLeft) {
12 ul[0] /= probLeft;
13 float probLower = T.load(x, y, mip) / left;
14 if (u[l] < probLower) {
15 u[l] /= probLower;
16 }
17 else {
18 YV++;
19 u[1l] = (u[1l] - probLower) / (1.0f - probLower);
20 }

21 }

22 else {

23 X++;

24 u[0] = (u[0] - probLeft) / (1.0f - probLeft);

25 float probLower = T.Tload(x, y, mip) / right;

233

RAY TRACING GEMS

16.5

16.5.1

234

26 if (u[l] < probLower) {

27 u[l] /= probLower;

28 }

29 else {

30 Y++;

31 ul[l] = (u[l1l] - probLower) / (1.0f - probLower);
32 }

33 }

34 }

35 // We have found a texel (x,y) with probability proportional to
36 // its normalized value. Compute the PDF and return the

37 // coordinates.

38 *pdf = T.Tload(x, y, 0) / T.load(0, 0, T.maxMip());

39 return int2(x, y);

40 }

It should be noted that some numerical precision can be lost for all these methods
that remap one or more uniformly distributed sample along the way. The input
values are generally in 32-bit floating-point format, which means that once we

get a leaf to sample, there may be only a few bits of precision left. This is not
usually a problem in practice for common texture sizes, but it is important to know
about. For higher precision, we always have the option of drawing new uniformly
distributed samples at each step, but then stratification properties may be lost.

Another useful tip is that it is not necessary for the probabilities at each level in the
tree to be the sums of the underlying nodes. If this is not the case, we can simply
compute the sampling probability density function along the way by multiplicatively
accumulating the selecting probabilities at each step. This leads to algorithms that
allow sampling of functions where the full probability density function is not known
beforehand but is created on the fly.

UNIFORMLY SAMPLING SURFACES

When sampling a two-dimensional surface uniformly, i.e., every point on the
surface is equally likely to be sampled, the PDF of all points equals one over the

1
area of the surface. For example, for a unit sphere ,0=4—.
V4

DISK

A disk is centered at the origin (x,y) = (0,0) and has radius r.

SAMPLING TRANSFORMATIONS Z0O

16.5.1.1 POLAR MAPPING

M
T

A polar mapping transforms the uniform ul0] to favor larger radii, which in turn
ensures a uniform distribution of samples. The area of the disk increases as the
radius increases, with only a fourth of the total being within the half-radius.

1r =R * sqrt(u[0]);
2 phi = 2*M_PI*u[l];
3 x = r*cos(phi);
4 y = r*sin(phi);

This polar mapping is usually not used because of the “seam” (discontinuity in the
inverse transform) and the concentric mapping discussed next is preferred unless
branching is being avoided.

16.5.1.2 CONCENTRIC MAPPING

: _ R

A concentric mapping maps concentric squares with [0, 1)2 to concentric circles so
that there is no seam and adjacency is preserved [11].

1a=2*u[0] - 1; b = 2*u[l] - 1;

24if (b==0) b =1;

3 4if (a*a > b*b) {

4 r = R*a;

5 phi = (M_P1/4)*(b/a);

6 } else {

7 r = R*b;

8 = (M_PI/2) - (M_PI/4)*(a/b);
91

235

RAY TRACING GEMS

10 x
11 v

r*cos(phi);
r*sin(phi);

16.5.2 TRIANGLE

To uniformly sample a triangle with vertices Py, Py, and P,, barycentric coordinates
are used to transform the coordinates to be in range, or to flip the seed point if it is
not in the lower half of the square.

16.5.2.1 WARPING

We can sample directly in the valid barycentric range to warp a quadrilateral into a
triangle:

1 beta = 1-sqrt(u[0]);

2 gamma = (l-beta)*u[l];

3 alpha = 1-beta-gamma;

4 P = alpha*P0 + beta*Pl + gamma*P2;

16.5.2.2 FLIPPING

236

—=

To avoid the square root, you can also sample from a quadrilateral and flip the
sample if you are on wrong side of the diagonal. However, flipping over the diagonal
can reduce the effectiveness of blue noise or low-discrepancy sampling within

the triangle, as there is usually no guarantee that well-distributed points in two
dimensions remain well distributed when folded.

SAMPLING TRANSFORMATIONS Z0O

alpha = u[0];
beta = ul[l];
if (alpha + beta > 1) {
alpha = 1-alpha;
beta = 1-beta;
}
gamma = l-beta-alpha;
P = alpha*P0 + beta*Pl + gamma*P2;

coONOYULI D WN R

16.5.3 TRIANGLE MESH

To sample points on a triangle mesh, Turk [13] suggests using binary search on the
one-dimensional discrete distribution of triangle areas.

We can improve mesh sampling and create a mapping from samples in the unit
square to points on the mesh by combining texture sampling from Section 16.4.2.2,
triangle sampling from Section 16.5.2, and the remapped uniformly distributed
samples from our array sampling function in Section 16.3.4.2. The steps are:

> Store the area of each triangle in a square-ish two-dimensional table. Order
does not matter. Use 0 as the area for cells not associated with any triangles.

> Build a CDF of area for each row in the table and normalize.

> Build a CDF for the last column (the sum of area across each row) and
normalize.

To sample the mesh:

> Take a uniformly distributed two-dimensional sample (u[0], u[1]).

> Use ul1] to binary-search the column CDF. This determines which row r to use.
> Use u[0] to binary search the row to find the sample’s column c.

> Save the remapped samples from (u[0], u[1]) as (v[0], v[1]).

237

RAY TRACING GEMS

> Using our remapped two-dimensional variable (v[0],v[1]), sample the triangle
corresponding to row rand column ¢, using the triangle sampling method from
Section 16.5.2.

> Theresulting three-dimensional coordinates are uniformly distributed on the
triangle mesh.

Note that this method is discontinuous, which may affect the quality of the samples
after transformation.

16.5.4 SPHERE

e,

H

74 [J
~
7% o
0 [)
'
\Ne
%i*

[
\

The sphere is centered at the origin and has radius r.

16.5.4.1 LATITUDE-LONGITUDE MAPPING

The following code shows how points can be generated using a uniform latitude-
longitude mapping. Note the z value is uniformly distributed on (-1,1].

1la=1- 2*%u[0];

2 b =sqrt(l - a*a);
3 phi = 2*M_PI*u[l];
4 x = R*b*cos(phi);
5 y = R*b*sin(phi);
6 z = R¥a;

16.5.4.2 OCTAHEDRAL CONCENTRIC (UNIFORM] MAP

238

SAMPLING TRANSFORMATIONS Z0O

The previous method (the latitude-longitude map) is intuitive, but a drawback is
that it “stretches” the sampling domain quite significantly at the top and bottom.
Building on the concentric map in Section 16.5.1.2 and combining it with an
octahedral map (cf., Figure 2 in Praun and Hoppe [9]), it is possible to define an
octahedral concentric mapping of the sphere with good properties; its stretch is
at worst a factor of 2 : 1 [1]. With a uniform two-dimensional point as input, the
optimized transform to the unit sphere is as follows:

1 // Compute radius r (branchless).

2 u=2%u - 1;

3d=1- (abs(u[0]) + abs(u[1]));

4 r =1 - abs(d);

5

6 // Compute phi in the first quadrant (branchless, except for the
7 // division-by-zero test), using sign(u) to map the result to the
8 // correct quadrant below.

9 phi = (r==0) 7?0 : (M_PI/4) * ((abs(u[1]) - abs(u[0])) / r + 1);
10 f = r * sqrt(2 - r*r);
11 x = f * sign(u[0]) * cos(phi);
12 y = f * sign(u[1l]) * sin(phi);

13 z = sign(d) * (1 - r*r);
14 pdf =1 / (4*M_PI);

Note that in many applications these transforms from the unit square to the unit
sphere are useful not only for generating samples, but also for representing
spherical functions in a convenient square two-dimensional domain. The inverse
operation, to map points on the unit sphere (e.g., ray directions) back to two
dimensions, is equally useful.

16.6 SAMPLING DIRECTIONS

Sampling PDFs defined over directions on the sphere or hemisphere is a central
part of many ray tracers. Often this sampling is for integrating incoming light to
compute an outgoing intensity at a point. These PDFs are commonly defined in
spherical coordinates where the polar angle (sometimes called the zenith angle)
is usually denoted 8 and the azimuthal angle is denoted ¢. Unfortunately, different
fields vary in whether they use this or the opposite notation convention. So, this
notation may be the reverse of what the reader is used to, depending on their
background, but it is relatively standard in computer graphics.

When choosing a direction, a common convention is to choose a point on the unit
sphere (or hemisphere) and define the direction as the unit vector from the sphere
center to that point.

239

RAY TRACING GEMS

16.6.1

16.6.2

240

COSINE-WEIGHTED HEMISPHERE ORIENTED TO THE Z-AXIS

A common way to generate diffuse rays in rendering methods for matte surfaces is
to sample uniformly from a disk (as in Section 16.5.1) and then project the sample
point up to the hemisphere. Doing so produces samples with a cosine-weighted
distribution, where the density is high at the apex of the hemisphere and falls off
toward the base. Generated samples will need to be transformed into the local
tangent space of the surface being rendered.

1 x = sqrt(u[0])*cos(2*M_PI*ul[l]);
2y = sqrt(u[0])*sin(2*M_PI*ul[l]);
3 z = sqrt(1-ul0]);

4 pdf = z / M_PI;

COSINE-WEIGHTED HEMISPHERE ORIENTED TO AVECTOR

As an alternative to transforming the z-axis to n (e.g., the normal of the tangent
space), we can use a uniformly distributed sample on a tangent sphere. This
method avoids constructing tangent vectors, but it comes at the expense of
numerical precision for the grazing case. We can pick a uniformly distributed
direction through a sphere by connecting two uniformly distributed samples on the
surface of a sphere [10]. Doing so implies that the directions to the second point
have a cosine density relative to the first point. If the vector n = (n,,n,,n,) is a unit-
length vector, this implies the following:

1la=1- 2*%ul[0];

2 b =sqrt(l - a*a);

3 phi = 2*M_PI*u[l];

4 x = n_x + b*cos(phi);
5y =n_y + b*sin(phi);
6 z=n_z + a;

7 pdf = a / M_PI;

SAMPLING TRANSFORMATIONS Z0O

Note that (x,y,2]) is not a unit vector. The precision problem arises when the
uniformly distributed sample on the tangent sphere is nearly opposite to n,
resulting in an output vector that is close to zero. Such points correspond to grazing
rays (perpendicular to the normal). To avoid these cases, we can shrink the tangent
sphere a bit by multiplying both a and b by a number slightly less than one.

16.6.3 DIRECTIONS IN A CONE

O max A+Z
—

Given a cone with axis along the +z-axis and a spread angle 6,.,,, uniform directions
in the cone can be sampled as follows:

1 float cosTheta (1 - u[0]) + u[0] * cosThetamax;
2 float sinTheta = sqrt(l - cosTheta * cosTheta);
3 float phi = u[l] * 2 * M_PI;

4 x = cos(phi) * sinTheta
5 y = sin(phi) * sinTheta
6 z = cosTheta

The PDF of all samples is 1/(2z(1 — cos 2.

16.6.4 PHONG DISTRIBUTION

@
Given a Phong-like PDF with exponent s,
p(0. ¢)=5—+2c055 0, (11)
2z

241

RAY TRACING GEMS

16.6.5

242

we can sample a direction relative to the z-axis as follows:

1 cosTheta = pow(1-u[0],1/(2+s));

2 sinTheta sqrt(l-cosTheta*cosTheta);
i = 2*M_PI*u[l];

cos(phi)*sinTheta;
sin(phi)*sinTheta;

cosTheta;

w
X T
>
'}

(o) IV, I

y
z

Note that the generated direction may be below the surface indicated in the
diagram. Most programs use a test to set the contribution of such directions to
zero.

GGX DISTRIBUTION
The Trowbridge-Reitz GGX normal distribution function [12, 15]:

2

D(6,)= 4 ,
() ;z(1+(a2—1)cosz¢9h)2 12l

is commonly used for the specular lobe in microfacet reflectance models. Its width
or roughness parameter a defines the appearance of the surface, with lower values
indicating shinier surfaces.

The GGX distribution can be sampled by transforming two-dimensional uniformly
distributed samples into spherical coordinates for the half-vector as follows:

0, = arctan{

aul0] (13)
J1-dol)

@, =2zulll, (14)

where a is the GGX roughness parameter. It is often convenient to rewrite the
expression using trigonometric identities to directly compute cosd, as

1-u[0]

9 = |9
0S5 (o2 ~1)ul01+1 (15)

and to use the Pythagorean identity to compute sing, =4/1-cos’ 6, as before. The
PDF of the sampled half-vector is p(@;, @,) = D(6}) cos 6.

16.7

16.7.1

16.7.1.1

SAMPLING TRANSFORMATIONS Z0O

For rendering, we are usually interested in sampling incident directions based on
a given outgoing direction and local tangent frame. To do so, the outgoing direction
v is reflected around the sampled half-vector h to find the incident direction as

(= 2(\7.5)5—\7. This operation changes the PDF above, which must be multiplied by
the Jacobian of the transform that is 1/(4(\7.5)) in this case [14].

As with the Phong sampling in Section 16.6.4, the generated direction can be
below the surface. Typically these are areas where the integrand is zero, but
programmers should make sure to handle these cases carefully.

VOLUME SCATTERING

For volumes, also often called participating media, rays will “collide” with the
volume in a probabilistic fashion. Some programs do this with incremental
ray integration, but an alternative is to compute discrete collisions. For more
information on volumes for graphics, see Chapter 11 of Pharr et al. [8].

Also see Chapter 28 for more information on this topic.

DISTANCES IN AVOLUME

Tracing photons through scattering and absorbing media requires importance
sampling of distances proportional to the volume transmittance

T(s):exp(—_/o‘src(t)dl‘] (16)

for the volume extinction coefficient «(t). The PDF for this distribution is

p(s):x(s)exp(—/osx(t)dfj. (17)

HOMOGENEOUS MEDIA

In the case that x is a constant, we have p(s) = x exp (—s«] and the inversion method
can be used to obtain the following:

1s =-log(l - u) / kappa;

Note that 1 — v is important: remember that we assumed u € [0,1),s0 1 —u € (0, 1],
which avoids invoking the logarithm for zero!

243

RAY TRACING GEMS

16.7.1.2 INHOMOGENEOUS MEDIA

16.7.2

16.8

244

For spatially varying «(t], a procedure often referred to as Woodcock tracking gives
the desired distribution [16]. Given the maximum extinction coefficient x,., along
the ray and a generator u for samples uniform in [0, 1), the procedure is as follows:

1s =0;

2 do {

3 s -= log(1l - uQ)) / kappa_max;

4 } while (kappa(s) < u() * kappa_max);

HENYEY-GREENSTEIN PHASE FUNCTION

The Henyey-Greenstein phase function is a useful tool to model the directional
scattering characteristics inside a volume. It is a PDF on the sphere of all directions
that depends only on the angle 8 between the incoming and outgoing directions and
that is controlled with a single parameter g (the average cosine):

1—
p(@ = g 32
47[(1+g2 —2gcos 0)

(18)

For g = 0 the scattering is isotropic, for g approaching —1 the scattering becomes
highly focused forward scattering, and for g approaching 1 the scattering turns into
highly focused backward scattering.

1 phi = 2.0 * M_PI * u[0];

2 if (g 1= 0) {

3 tmp = (1L -9g*g / @+g* (1-2%*ull]));
4 cos_theta = (1 +g *g - tmp * tmp) / (2 * g);
5 3} else {

6 cos_theta =1 - 2 * u[l];

7}

ADDING TO THE ZOO COLLECTION

We have presented a variety of transforms we have found useful for ray tracing
programs. We have not delved deeply into the theory needed to add to this
collection. Readers that want to learn more about that theory so they can add
their own “animals” can find thorough treatments in the books by Pharr et al. [8],
Glassner [5], and Dutré et al. [4].

SAMPLING TRANSFORMATIONS Z0O

REFERENCES

[1]1 Clarberg, P. Fast Equal-Area Mapping of the (Hemi]Sphere Using SIMD. Journal of Graphics Tools
13, 3 (2008), 53-68.

[2] Clarberg, P., Jarosz, W., Akenine-Méller, T., and Jensen, H. W. Wavelet Importance Sampling:
Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005),
1166-1175.

[31 Conty Estévez, A., and Kulla, C. Importance Sampling of Many Lights with Adaptive Tree Splitting.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1-25:17.

[4] Dutré, P., Bekaert, P., and Bala, K. Advanced Global lllumination. A K Peters, 2006.

[5]1 Glassner, A.S. Principles of Digital Image Synthesis. Elsevier, 1995.

[6] Keller, A. Quasi-Monte Carlo Image Synthesis in a Nutshell. In Monte Carlo and Quasi-Monte Carlo
Methods 2012. Springer, 2013, pp. 213-249.

[7] Keller, A., Wachter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndorfer, J., and Kettner,
L. The Iray Light Transport Simulation and Rendering System. arXiv, http://arxiv.org/
abs/1705.01263, 2017.

[8] Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation, third ed. Morgan Kaufmann, 2016.

[91 Praun, E., and Hoppe, H. Spherical Parametrization and Remeshing. ACM Transactions on
Graphics 22, 3 (2003), 340-349.

[10] Sbert, M. An Integral Geometry Based Method for Fast Form-Factor Computation. Computer
Graphics Forum 12, 3 (1993), 409-420.

[11]1 Shirley, P, and Chiu, K. A Low Distortion Map Between Disk and Square. Journal of Graphics Tools
2,31(1997), 45-52.

[12] Trowbridge, T. S., and Reitz, K. P. Average Irregularity Representation of a Rough Surface for Ray
Reflection. Journal of the Optical Society of America 65, 5 (1975), 531-536.

[13] Turk, G. Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion. Computer Graphics
(SIGGRAPH] 25, 4 (July 1991), 289-298.

[14] Walter, B. Notes on the Ward BRDF. Tech. Rep. PCG-05-06, Cornell Program of Computer
Graphics, April 2005.

[15] Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refraction Through
Rough Surfaces. In Proceedings of the 18th Eurographics Conference on Rendering Techniques
(2007), pp. 195-206.

[16] Woodcock, E. R., Murphy, T., Hemmings, P. J., and Longworth, T. C. Techniques Used in the

GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex
Geometry. In Applications of Computing Methods to Reactor Problems (1965), p. 557.

245

http://arxiv.org/abs/1705.01263
http://arxiv.org/abs/1705.01263

RAY TRACING GEMS

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

246

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 17

Ilgnoring the Inconvenient When
Tracing Rays

Matt Pharr

NVIDIA

17.1

17.2

ABSTRACT

Ray tracing’s greatest strength—that it can simulate all types of light transport—
can also be its greatest weakness: when there are a few paths that unexpectedly
carry much more light than others, the produced images contain a smattering of
pixels that have bright spiky noise. Not only can it require a prohibitive number of
additional rays to average out those spikes, but those pixels present a challenge
for denoising algorithms. This chapter presents two techniques to address this
problem, preventing it from occurring in the first place.

INTRODUCTION

Ray tracing is a marvelous algorithm, allowing unparalleled fidelity in the accurate

simulation of light transport for image synthesis. No longer are rasterizer hacks
required to generate high-quality images; real-time graphics programmers can

now happily move forward to a new world, tracing rays to make beautiful images,
and be free of the shackles of that history.

Now, let us move on to the new hacks.

MOTIVATION

Figure 17-1 presents two images of a pair of spheres in a box, both rendered
with path tracing, using a few thousand paths per pixel to compute a high-quality
reference image. The scene is illuminated by an area light source (not directly
visible). The only difference between the two images is the material on the right-
hand sphere: diffuse on the left and a perfectly specular mirror on the right.

© NVIDIA 2019
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_17

247

RAY TRACING GEMS

Something interesting happens if we render these scenes with a more realistic
number of samples per pixel—here we used 16." Figure 17-2 shows the result: the
scene with only diffuse spheres looks pretty good. However, the scene with the
mirrored sphere has bright spiky noise, sometimes called “fireflies,” scattered all
around the scene.

From what one might have thought is an innocuous change in material, we see a
massive degradation in image quality. What is going on here?

Figure 17-1. A simple scene, illuminated by a single area light source, rendered with path tracing and
enough paths to give high-quality reference images. The only difference between the two renderings is
that one of the diffuse spheres has been changed to be mirrored in the right image.

To understand what has happened, imagine for a moment that we instead wanted
to compute the average pixel value of an image by averaging pixel values at just

a handful of randomly chosen pixels. Consider performing that task with the two
converged images in Figure 17-1. In the scene with two diffuse spheres, most pixels
have values that are roughly the same magnitude. Thus, no matter which pixels you
choose, the average you compute will be in the correct ballpark.

In the scene with the specular sphere, note that we can see a small reflection of
the light source in the mirrored sphere. In the rare cases where we happened to
choose for our computation one of the pixels where the light source is visible, we
would be adding in the amount of that light's emission; most of the time, however,
we would miss it entirely.

'While 16 samples per pixel may be impractical today for interactive graphics for complex scenes at high
resolutions, we assume that both temporal accumulation of samples and a denoising algorithm will be used in
practice. In this chapter, we will not use either in order to make it easy to understand the image artifacts.

248

IGNORING THE INCONVENIENT WHEN TRACING RAYS

Given the small size of the light and its distance from the scene, the light source
needs a fairly large amount of emission to give enough illumination to light the
scene. Here, in order to have final shaded pixel values roughly in the range [0, 1],
the light's emission has to be (500,500,500) in RGB. Thus, if we happen to include

a pixel where the light's reflection is visible but sample only a small number of
pixels, we will grossly overestimate the true average. Most of the time, when we do
not include one of those pixels, we will underestimate the average, since we are not
including any of the pixels with high values.

Now back to the rendered images in Figure 17-2. When path tracing, at each point on
a surface where we trace a new ray, we face more or less the same problem as in
the image averaging exercise: we are trying to estimate a cosine and BSDF-weighted
average of the light arriving at the point using just a few rays. When the world is
mostly similar in all directions, choosing just one direction works well. When it is
quite different in a small set of directions, we run into trouble, randomly getting
much too high estimates of the average for a small fraction of the pixels. In turn, that
manifests itself as the kind of spiky noise we see on the right in Figure 17-2.

Figure 17-2. Example scenes, rendered with 16 samples per pixel. Left: the scene with diffuse
spheres is well-behaved and could easily be denoised to a high-quality image (of a boring scene). Right:
we have a multitude of spiky noisy pixels and some way to go before we have a good-looking image.

Understanding the cause of the spiky noise, we can see something interesting in
the distribution of the speckles: they are much more common on surfaces that
can “see” the mirrored sphere, as a path has to hit the mirrored sphere in order
to unexpectedly find its way back to the light source. Note that there is a kind of
shadow of no speckles in the lower left of the image; the green sphere occludes
points there from seeing the mirrored sphere directly.

249

RAY TRACING GEMS

17.3

250

The challenging thing about this kind of noise is how slowly it goes away as you
take more samples. Consider the case of computing the average image color again:
once we include one of those (500,500,500) colors in our sum, it takes quite a few
additional samples in the range [0, 1] to get back to the true average. As it turns out,
taking more samples can make the image look worse, even though it is (on average)
getting better: as more rays are traced, more and more pixels will have paths that
randomly hit the light.

CLAMPING

The simplest solution to this problem is clamping. Specifically, we clamp any
sample values c that are higher than a user-provided threshold t. Here is the
algorithm in its entirety:

¢’ =min(c,¢). (1)

Figure 17-3 shows the mirrored sphere scene rendered with path contributions
clamped at 3. Needless to say, it is much less noisy. The image on the left was
rendered with 16 samples per pixel (like the images in Figure 17-2) and one on the
right was rendered to convergence.

Figure 17-3. Specular sphere scene rendered with clamping using 16 (left) and 1024 (right] samples
per pixel. Note that the spiky noise from Figure 17-2 has disappeared, though we have also lost the
light reflected by the sphere onto the floor and wall next to it (visible in Figure 17-1].

17.4

IGNORING THE INCONVENIENT WHEN TRACING RAYS

With 16 samples, the spiky noisy pixels are gone, and we are much closer to a
good-looking image. However, note the difference between the 1024-sample
image here and the final image in Figure 17-1: we have lost the focused light from
the light source below the mirrored sphere on the floor and to the right on the
wall (a so-called caustic). What is happening is that the illumination comes from a
small number of high-contribution paths and, thus, clamping prevents them from
contributing much to the final image.

PATH REGULARIZATION

Path regularization offers a less blunt hammer than clamping. It requires slightly
more work to implement, but it does not suffer from the loss of energy that we saw
with clamping.

Consider again the thought exercise of computing the average value of the image
from just a few pixels: if you have an image with a few very bright pixels, like we
have with the reflection of the light source in the mirrored sphere, then you could
imagine that you would get a better result if you were able to apply a wide blur to
the image before picking pixels to average. In that way, the bright pixels are both
spread out and made dimmer, and thus the blurred image has less variation and
which pixels you choose matters less.

Path regularization is based on this idea. The concept is straightforward: blur
the BSDFs in the scene when they are encountered by indirect rays. When
regularization is performed at such points, the sphere becomes glossy specular
rather than perfectly specular.

The left image in Figure 17-4 shows how this works with our scene at 16 samples
per pixel, and the right one shows its appearance as the image converges at around
128 samples. Regularization has eliminated the spiky noise while still preserving a
representation of the caustic reflection of the light source.

251

RAY TRACING GEMS

17.5

252

Figure 17-4. Left: the scene is rendered with path reqularization at 16 samples per pixel. Note that
the random spiky noise is gone, while the caustic from the light source is still present. Right: once we
accumulate 128 samples per pixel, we have a fairly clean image that still includes the caustic.

CONCLUSION

Sometimes in ray tracing we encounter spiky noise in our images due to localized
bright objects or reflections that are not being well-sampled by the employed
sampling techniques. Ideally, we would improve our sampling techniques in that
case, but this is not always possible or there is not always time to get it right.

In those cases, both clamping and path regularization can be effective techniques
to get good images out the door; both are easy to implement and both work well.
Clamping is a one-line addition to a renderer, and path regularization just requires
recording whether a non-specular surface has been encountered in a ray path and
then, when so, making subsequent BSDFs less specular.

The path regularization approach can be placed on a much more principled
theoretical ground than we have used in describing it here. See Kaplanyan and
Dachsbacher’s paper [1] for details.

A more principled approach to clamping is outlier rejection, where samples that are
unusually bright with respect to other samples are discarded. Outlier rejection is
more robust than a fixed clamping threshold and loses less energy. See the paper
by Zirr et al. [2] for a recent outlier rejection technique that is amenable to GPU
implementation.

IGNORING THE INCONVENIENT WHEN TRACING RAYS

REFERENCES

[11 Kaplanyan, A. S., and Dachsbacher, C. Path Space Regularization for Holistic and Robust Light
Transport. Computer Graphics Forum 32, 2 (2013), 63-72.

[2]1 Zirr, T., Hanika, J., and Dachsbacher, C. Reweighting Firefly Samples for Improved Finite-Sample
Monte Carlo Estimates. Computer Graphics Forum 37, 6 (2018), 410-421.

@@@@ Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/

licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

253

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER 18

Importance Sampling of Many Lights
on the GPU

Pierre Moreau'? and Petrik Clarberg’

'NVIDIA

2l und University

18.1

ABSTRACT

The introduction of standardized APIs for ray tracing, together with hardware
acceleration, opens up possibilities for physically based lighting in real-time
rendering. Light importance sampling is one of the fundamental operations in
light transport simulations, applicable to both direct and indirect illumination.
This chapter describes a bounding volume hierarchy data structure and
associated sampling methods to accelerate importance sampling of local light
sources. The work is based on recently published methods for light sampling
in production rendering, but it is evaluated in a real-time implementation using
Microsoft DirectX Raytracing.

INTRODUCTION

A realistic scene may contain hundreds of thousands of light sources. The accurate
simulation of the light and shadows that they cast is one of the most important
factors for realism in computer graphics. Traditional real-time applications with
rasterized shadow maps have been practically limited to use a handful of carefully
selected dynamic lights. Ray tracing allows more flexibility, as we can trace
shadow rays to different sampled lights at each pixel.

Mathematically speaking, the best way to select those samples is to pick lights with
a probability in proportion to each light’s contribution. However, the contribution
varies spatially and depends on the local surface properties and visibility. Hence, it
is challenging to find a single global probability density function (PDF) that works
well everywhere.

The solution that we explore in this chapter is to use a hierarchical acceleration
structure built over the light sources to guide the sampling [11, 22]. Each node
in the data structure represents a cluster of lights. The idea is to traverse

the tree from top to bottom, at each level estimating how much each cluster

© NVIDIA 2019 255
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_18

RAY TRACING GEMS

256

contributes, and to choose which path through the tree to take based on random
decisions at each level. Figure 18-1 illustrates these concepts. This means that
lights are chosen approximately proportional to their contributions, but without
having to explicitly compute and store the PDF at each shading point. The
performance of the technique ultimately depends on how accurately we manage
to estimate the contributions. In practice, the pertinence of a light or a cluster
of lights, depends on its:

£ =0.692183

08,/ \o02 / N\ / N\ /\
/N /N e/ Nos [\ /N AN
/\ /\ 05/ \05 /\

p =102

Figure 18-1. All the light sources in the scene are organized in a hierarchy. Given a shading point X,
we start at the root and proceed down the hierarchy. At each level, the importance of each immediate
child with respect to X is estimated by a probability. Then, a uniform random number & decides the path
through the tree, and at the leaf we find which light to sample. In the end, more important lights have a
higher probability of being sampled.

> Flux: The more powerful a light is, the more it will contribute.

> Distance to the shading point: The further away a light lies, the
smaller the solid angle it subtends, resulting in less energy
reaching the shading point.

> Orientation: A light source may not emit in all directions, nor do
so uniformly.

> Visibility: Fully occluded light sources do not contribute.

> BRDF at the shading point: Lights located in the direction of the
BRDF's main peaks will have a larger fraction of their energy
reflected.

A key advantage of light importance sampling is that it is independent of the
number and type of lights, and hence scenes can have many more lights than we
can afford to trace shadow rays to and large textured area lights can be seamlessly
supported. Since the probability distributions are computed at runtime, scenes

can be fully dynamic and have complex lighting setups. With recent advances

in denoising, this holds promise to reduce rendering time, while allowing more
artistic freedom and more realistic results.

18.2

18.2.1

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

In the following, we discuss light importance sampling in more detail and present
a real-time implementation that uses a bounding volume hierarchy (BVH] over the
lights. The method is implemented using the Microsoft DirectX Raytracing (DXR)
API, and source code is available.

REVIEW OF PREVIOUS ALGORITHMS

With the transition to path tracing in production rendering [21, 31], the visibility
sampling is solved by tracing shadow rays toward sampled points on the light
sources. When a shadow ray does not hit anything on its way from a shading point
to the light, the point is deemed to be lit. By averaging over many such samples
over the surfaces of the lights, a good approximation of the lighting is achieved. The
approximation converges to ground truth as more samples are taken. However,
with more than a handful of light sources, exhaustive sampling is not a viable
strategy, not even in production rendering.

To handle the complexity of dynamic lighting with many lights, most techniques
generally rely on building some form of spatial acceleration structure over the
lights, which is then used to accelerate rendering by either culling, approximating,
or importance-sampling the lights.

REAL-TIME LIGHT CULLING

Game engines have transitioned to use mostly physically based materials and light
sources specified in physical units [19, 23]. However, for performance reasons

and due to the limitations of the rasterization pipeline, only a few point-like light
sources can be rendered in real time with shadow maps. The cost per light is high
and the performance scales linearly with the number of lights. For area lights, the
unshadowed contribution can be computed using linearly transformed cosines [17],
but the problem of evaluating visibility remains.

To reduce the number of lights that need to be considered, it is common to
artificially limit the influence region of individual lights, for example, by using

an approximate quadratic falloff that goes to zero at some distance. By careful
placement and tweaking of the light parameters, the number of lights that affect
any given point can be limited.

Tiled shading [2, 28] works by binning such lights into screen-space tiles, where

the depth bounds of the tiles effectively reduce the number of lights that need to
be processed when shading each tile. Modern variants improve culling rates by

splitting frusta in depth (2.5D culling) [15], by clustering shading points or

lights [29, 30], or by using per-tile light trees [27].

257

RAY TRACING GEMS

18.2.2

18.2.3

258

A drawback of these culling methods is that the acceleration structure is in screen
space. Another drawback is that the required clamped light ranges can introduce
noticeable darkening. This is particularly noticeable in cases where many dim
lights add up to a significant contribution, such as Christmas tree lights or indoor
office illumination. To address this, Tokuyoshi and Harada [40] propose using
stochastic light ranges to randomly reject unimportant lights rather than assigning
fixed ranges. They also show a proof-of-concept of the technique applied to path
tracing using a bounding sphere hierarchy over the light sources.

MANY-LIGHT ALGORITHMS

Virtual point lights (VPLs) [20] have long been used to approximate global
illumination. The idea is to trace photons from the light sources and deposit VPLs
at path vertices, which are then used to approximate the indirect illumination.

VPL methods are conceptually similar to importance sampling methods for many
lights. The lights are clustered into nodes in a tree, and during traversal estimated
contributions are computed. The main difference is that, for importance sampling,
the estimations are used to compute light selection probabilities rather than
directly to approximate the lighting.

For example, lightcuts [44, 45] accelerate the rendering with millions of VPLs by
traversing the tree per shading point and computing error bounds on the estimated
contributions. The algorithm chooses to use a cluster of VPLs directly as a light
source, avoiding subdivision to finer clusters or individual VPLs, when the error

is sufficiently small. We refer to the survey by Dachsbacher et al. [12] for a good
overview of these and other many-light techniques. See also the overview of global
illumination algorithms by Christensen and Jarosz [8].

LIGHT IMPORTANCE SAMPLING

In early work on accelerating ray tracing with many lights, the lights are sorted
according to contribution and only the ones above a threshold are shadow
tested [46]. The contribution of the remaining lights is then added based on a
statistical estimate of their visibility.

Shirley et al. [37] describe importance sampling for various types of light sources.
They classify lights as bright or dim by comparing their estimated contributions to
a user-defined threshold. To sample from multiple lights, they use an octree that
is hierarchically subdivided until the number of bright lights is sufficiently small.
The contribution of an octree cell is estimated by evaluating the contribution at a
large number of points on the cell’s boundary. Zimmerman and Shirley [47] use a
uniform spatial subdivision instead and include an estimated visibility in the cells.

18.3

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

For real-time ray tracing with many lights, Schmittler et al. [36] restrict the
influence region of lights and use a k-d tree to quickly locate the lights that affect
each point. Bikker takes a similar approach in the Arauna ray tracer [5, 6], but it
uses a BVH with spherical nodes to more tightly bound the light volumes. Shading
is done Whitted-style by evaluating all contributing lights. These methods suffer
from bias as the light contributions are cut off, but that may potentially be alleviated
with stochastic light ranges as mentioned earlier [40].

In the Brigade real-time path tracer, Bikker [6] uses resampled importance
sampling [39]. A first set of lights is selected based on a location-invariant
probability density function, and then this set is resampled by more accurately
estimating the contributions using the BRDF and distances to pick one
important light. In this approach, there is no hierarchical data structure.

The Iray rendering system [22] uses a hierarchical light importance sampling
scheme. Iray works with triangles exclusively and assigns a single flux (power])
value per triangle. A BVH is built over the triangular lights and traversed
probabilistically, at each node computing the estimated contribution of each
subtree. The system encodes directional information at each node by dividing
the unit sphere into a small number of regions and storing one representative
flux value per region. Estimated flux from BVH nodes is computed based on the
distance to the center of the node.

Conty Estevez and Kulla [11] take a similar approach for cinematic rendering.
They use a 4-wide BVH that also includes analytic light shapes, and the lights
are clustered in world space including orientation by using bounding cones. In
the traversal, they probabilistically select which branch to traverse based on

a single uniform random number. The number is rescaled to the unit range at
each step, which preserves stratification properties (the same technique is used
in hierarchical sample warping [9]). To reduce the problem of poor estimations
for large nodes, they use a metric for adaptively splitting such nodes during
traversal. Our real-time implementation is based on their technique, with some
simplifications.

FOUNDATIONS

In this section, we will first review the foundations of physically based lighting
and importance sampling, before diving into the technical details of our real-time
implementation.

259

RAY TRACING GEMS

18.3.1

260

LIGHTING INTEGRALS

The radiance L, leaving a point X on a surface in viewing direction v is the sum
of emitted radiance L, and reflected radiance L, under the geometric optics
approximation described by [18]:

L (X)=2, () L, (). m

where L, (X,v)= [A(Xv.0)L(X)(n-1)de 2
and where fis the BRDF and L; is the incident radiance arriving from a direction L. In
the following, we will drop the X from the notation when we speak about a specific
point. Also, let the notation L(X < Y) denote the radiance emitted from a point Yin
the direction toward a point X.

In this chapter, we are primarily interested in the case where L; comes from a
potentially large set of local light sources placed within the scene. The algorithm
can, however, be combined with other sampling strategies for handling distant light
sources, such as the sun and sky.

The integral over the hemisphere can be rewritten as an integral over all the
surfaces of the light sources. The relationship between solid angle and surface
areais illustrated in Figure 18-2. In fact, a small patch dA at a point Y on a light
source covers a solid angle

_Iny-—l\

do = dA
' (3)
Jx-rf

dA

Figure 18-2. The differential solid angle dw of a surface patch dA at a point Y on a light source is a
function of its distance ||X — Y|| and the angle cosO = | n, - —l] at which it is viewed.

18.3.2

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

i.e., there is an inverse square falloff by distance and a dot product between the
light's normal nyand the emitted light direction —L. Note that in our implementation,
light sources may be single-sided or double-sided emitters. For single-sided lights,
we set the emitted radiance L(X < Y) =0 if (ny- —1) < 0.

We also need to know the visibility between our shading point X and the point Y on
the light source, formally expressed as

. (4)
0 otherwise.

V(X(—))/) _ {I if Xand Y are mutually visible,
In practice, we evaluate v by tracing shadow rays from Xin direction L, with the
ray’s maximum distance ¢, = || X - Y||. Note that to avoid self-intersections due to
numerical issues, the ray origin needs to be offset and the ray shortened slightly
using epsilons. See Chapter 6 for details.

Now, assuming that there are m light sources in the scene, the reflected radiance
in Equation 2 can be written as

Lr(X,v):iLrv/(X,v), where (5)
/=1

In, -1

-1

L (Xv)= LAXNV)L(X < Y)v(X o V)max(n-L,0) . "

That s, L, is the sum of the reflected light from each individual lighti = {1, ... ,m}.
Note that we clamp n - L because light from points backfacing to the shading point
cannot contribute. The complexity is linear in the number of lights m, which may
become expensive when m is large. This leads us to the next topic.

IMPORTANCE SAMPLING

As discussed in Section 18.2, there are two fundamentally different ways to reduce
the cost of Equation 5. One method is to limit the influence regions of lights, and
thereby reduce m. The other method is to sample a small subset of lights n < m.
This can be done in such a way that the result is consistent, i.e., it converges to the
ground truth as n grows.

261

RAY TRACING GEMS

18.3.2.1 MONTE CARLO METHOD

262

Let Z be a discrete random variable with values z € {1, ..., m}. The probability that
Zis equal to some value z is described by the discrete PDF plz] = P(Z = z), where

>plz) = 1. For example, if all values are equally probable, then p(z) :%. If we

have a function g(Z) of a random variable, its expected value is

EB9(2)]=Y 9(2)n(2). (7)

zeZ
i.e., each possible outcome is weighted by how probable it is. Now, if we take n
random samples {z, ...,z,} from Z, we get the n-sample Monte Carlo estimate g, (Z)
of]E[g(Z)] as follows:
9(z,)- 8
J=1

In other words, the expectation can be estimated by taking the mean of random
samples of the function. We can also speak of the corresponding Monte Carlo

estimator g, (Z) which is the mean of the function of the n independent and

identically distributed random variables {Z;, ... ,Z,}. It is easy to show that

]E[gn (Z):| = E[g(Z)} , i.e., the estimator gives us the correct value.

Since we are taking random samples, the estimator g, (Z) will have some
variance. As discussed in Chapter 15, the variance decreases linearly with n:

Var[_?],7 (Z)]:%Var[g(Z)]. (9)

These properties show that the Monte Carlo estimator is consistent. In the limit,
when we have infinitely many samples, the variance is zero and it has converged to
the correct expected value.

To make this useful, note that almost any problem can be recast as an expectation.
We thus have a consistent way of estimating the solution based on random samples
of the function.

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

18.3.2.2 LIGHT SELECTION IMPORTANCE SAMPLING

In our case, we are interested in evaluating the sum of light reflected from all
the light sources (Equation 5). This sum can be expressed as an expectation
(cf., Equation 7) as follows:

u u L,',(X,V)P

L(XV)=2L,(Xv)=%

; (10)
= = P Z:/)

Following Equation 8, the Monte Carlo estimate Zr of the reflected light from all
light sources is therefore

APRS EkAl

L(XV)==—>) ———, (11)
niE o p(z)

that is, we sum the contribution from a randomly selected set of lights {z, ..., z,},

divided by the probability of selecting each light. This estimator is always
consistent, independent of how few samples n we take. However, the more samples
we take, the smaller the variance of the estimator will be.

Note that nothing discussed so far makes any assumptions on the distribution of
the random variable Z. The only requirement is that p(z) > 0 for all lights where

L., >0, otherwise we would risk ignoring the contribution from some lights. It

can be shown that the variance is minimized when p(z) « L, ,(X,v) [32, 38]. We will
not go into the details here, but when the probability density function is exactly
proportional to the function that we are sampling, the summation in the Monte
Carlo estimator reduces to a sum of constant terms. In that case the estimator has
zero variance.

In practice, this is not achievable because L, is unknown for a given shading point,
but we should aim for selecting lights with a probability as close as possible to their
relative contribution to the shading point. In Section 18.4, we will look at how p(z) is
computed.

18.3.2.3 LIGHT SOURCE SAMPLING

To estimate the reflected radiance using Equation 11, we also need to evaluate
the integral £, (X,v) for the randomly selected set of lights. The expression in

Equation 6 is an integral over the surface of the light that involves both BRDF and
visibility terms. In graphics, this is not practical to evaluate analytically. Therefore,
we again resort to Monte Carlo integration.

263

RAY TRACING GEMS

18.3.3

264

The surface of the light source is sampled uniformly with s samples {Y;, ..., Y.}
For triangle mesh lights, each light is a triangle, which means that we pick points
uniformly on the triangle using standard techniques [32] (see Chapter 16). The

probability density function for the samples on a triangle i is P(V) R where A;

is the area of the triangle. The integral over the light is then evaluated using the
Monte Carlo estimate

n, -,

=1

)V(X<—>)/k)max(n-lk,[]) (12)

L (Xv) :%i XV L)L (X <Y,
k=1

In the current implementation, s = 1 as we trace a single shadow ray for each of

the n sampled light sources, and n, =n, since we use the geometric normal of the

light source when evaluating its emitted radiance. Smooth normals and normal

mapping are disabled by default for performance reasons, because they often have

negligible impact on the light distribution.

RAY TRACING OF LIGHTS

In real-time applications, a common rendering optimization is to separate the
geometric representation from the actual light-emitting shape. For example, a light
bulb can be represented by a point light or small analytic sphere light, while the
visible light bulb is drawn as a more complex triangle mesh.

In this case, it is important that the emissive property of the light geometry
matches the intensity of the actual emitter. Otherwise, there will be a perceptual
difference between how bright a light appears in direct view and how much light

it casts into the scene. Note that a light source is often specified in photometric
units in terms of its luminous flux (lumen), while the emissive intensity of an area
light is given in luminance (cd/m?). Accurate conversion from flux to luminance
therefore needs to take the surface area of the light's geometry into account.
Before rendering, these photometric units are finally converted to the radiometric
quantities that we use (flux and radiance).

Another consideration is that when tracing shadow rays toward an emitter, we do
not want to inadvertently hit the mesh representing the light source and count the
emitter as occluded. The geometric representation must therefore be invisible

to shadow rays, but visible for other rays. The Microsoft DirectX Raytracing API
allows control of this behavior via the InstanceMask attribute on the acceleration
structure and by the InstanceInclusionMask parameter to Traceray.

18.4

18.4.1

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

For multiple importance sampling (MIS) [41], which is an important variance
reduction technique, we must be able to evaluate light sampling probabilities
given samples generated by other sampling strategies. For example, if we draw

a sample over the hemisphere using BRDF importance sampling that hits a light
source after traversal, we compute its probability had the sample been generated
with light importance sampling. Based on this probability together with the BRDF
sampling probability, a new weight for the sample can be computed using, for
example, the power heuristic [41] to reduce the overall variance.

A practical consideration for MIS is that if the emitters are represented by analytic
shapes, we cannot use hardware-accelerated triangle tests to search for the light
source in a given direction. An alternative is to use custom intersection shaders to
compute the intersections between rays and emitter shapes. This has not yet been
implemented in our sample code. Instead, we always use the mesh itself as the
light emitter, i.e., each emissive triangle is treated as a light source.

ALGORITHM

In the following, we describe the main steps of our implementation of light
importance sampling. The description is organized by the frequency at which
operations occur. We start with the preprocessing step that can happen at asset-
creation time, which is followed by the construction and updating of the light data
structure that runs once per frame. Then, the sampling is described, which is
executed once per light sample.

LIGHT PREPROCESSING

For mesh lights, we precompute a single flux value @, per triangle / as a
preprocess, similar to Iray [22]. The flux is the total radiant power emitted by the
triangle. For diffuse emitters, the flux is

o, = [L,(X)(n,0)dodd, (13)

where LX) is the emitted radiance at position X on the light’s surface. For non-
textured emitters, the flux is thus simply @, = zA,L;, where L;is the constant
radiance of the material and A; is the triangle’s area. The factor z comes from the
integral of the cosine term over the hemisphere. To handle textured emitters,
which in our experience are far more common than untextured ones, we evaluate
Equation 13 as a preprocess at load time.

To integrate the radiance, we rasterize all emissive triangles in texture space. The
triangles are scaled and rotated so that each pixel represents exactly one texel at

265

RAY TRACING GEMS

18.4.2

266

the largest mip level. The integral is then computed by loading the radiance for the
corresponding texel in the pixel shader and by accumulating its value atomically.
We also count the number of texels and divide by that number at the end.

The only side effect of the pixel shader is atomic additions to a buffer of per-triangle
values. Due to the current lack of floating-point atomics in DirectX 12, we use an
NVIDIA extension via NVAPI [26] to do floating-point atomic addition.

Since the pixel shader has no render target bound [i.e., it is a void pixel shader),
we can make the viewport arbitrarily large within the API limits, without worrying
about memory consumption. The vertex shader loads the UV texture coordinates
from memory and places the triangle at an appropriate coordinate in texture space
so that it is always within the viewport. For example, if texture wrapping is enabled,
the triangle is rasterized at pixel coordinates

(X,y)=(U—LUJ,V—LVJ)-(W,h), (14)

where w, h are the dimensions of the largest mip level of the emissive texture. With
this transform, the triangle is always in view, independent of the magnitude of its
(pre-wrapped) UV coordinates.

We currently rasterize the triangle using one sample per pixel, and hence only
accumulate texels whose centers are covered. Tiny triangles that do not cover any
texels are assigned a default nonzero flux to ensure convergence. Multisampling,
or conservative rasterization with analytic coverage computations in the pixel
shader, can be used to improve accuracy of the computed flux values.

All triangles with @; = 0 are excluded from further processing. Culling of zero flux
triangles is an important practical optimization. In several example scenes, the
majority of the emissive triangles lie in black regions of the emissive textures. This is
not surprising, as often the emissiveness is painted into larger textures, rather than
splitting the mesh into emissive and non-emissive meshes with separate materials.

ACCELERATION STRUCTURE

We are using a similar acceleration structure as Conty Estevez and Kulla [11], that
is, a bounding volume hierarchy [10, 33] built from top to bottom using binning [43].
Our implementation uses a binary BVH, meaning that each node has two children.
In some cases, a wider branching factor may be beneficial.

We will briefly introduce how binning works, before presenting different existing
heuristics used during the building process, as well as minor variants thereof.

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

18.4.2.1 BUILDING THE BVH

When building a binary BVH from top to bottom, the quality and speed at which
the tree is built depends on how the triangles are split between the left and right
children at each node. Analyzing all the potential split locations will yield the best
results, but this will also be slow and is not suitable for real-time applications.

The approach taken by Wald [43] consists of uniformly partitioning the space at
each node into bins and then running the split analysis on those bins only. This
implies that the more bins one has, the higher the quality of the generated tree will
be, but the tree will also be more costly to build.

18.4.2.2 LIGHT ORIENTATION CONE

To help take into account the orientation of the different light sources, Conty
Estevez and Kulla [11] store a light orientation cone in each node. This cone is made
of an axis and two angles, 6, and 6,: the former bounds the normals of all emitters
found within the node, whereas the latter bounds the set of directions in which light
gets emitted (around each normal).

For example, a single-sided emissive triangle would have 6, = 0 (there is only
one normal] and g, :g (it emits light over the whole hemisphere]. Alternatively,
an emissive sphere would have 6, = x (it has normals pointing in all directions)
and 0, :g, as around each normal, light is still only emitted over the whole

hemisphere; 6, will often be g except for lights with a directional emission profile

or for spotlights, where it will be equal to the spotlight’s cone angle.

When computing the cone for a parent node, its 8, will be computed such that it
encompasses all the normals found in its children, whereas 6, is simply computed
as the maximum of each child’s @..

18.4.2.3 DEFINING THE SPLIT PLANE

As mentioned earlier, an axis-aligned split plane has to be computed to split the set of
lights into two subsets, one for each child. This is usually achieved by computing a cost
metric for each possible split and picking the one with the lowest cost. In the context
of a binned BVH, we tested the surface area heuristic (SAH) (introduced by Goldsmith
and Salmon [14] and formalized by MacDonald and Booth [24]) and the surface area
orientation heuristic (SAOH) [11], as well as different variants of those two methods.

267

RAY TRACING GEMS

18.4.3

268

For all the variants presented below, the binning performed while building the
BVH can be done either on the largest axis only (of a node’s axis-aligned bounding
box (AABB])) or on all three axes and the split with the lowest cost is selected.
Only considering the largest axis will result in lower build time but also lower tree
quality, especially for the variants taking the light orientations into account. More
details on those trade-offs can be found in Section 18.5.

SAH The SAH focuses on the surface area of the AABB of the resulting children
as well as on the number of lights that they contain. If we define the left child as
L= u’/ﬂzobin/ and the right child as R= " bin , where k is the number of bins and

J=i+1

i € [0,k — 1], the cost for the split creating L and R as children is

cost(L, R)= n<,f () f &Lf)?;:((i)}i)ﬁ)

: (15)

where n(C) and a(C) return the number of lights and the surface area of a potential
child node C, respectively.

SAOH The SAQH is based on the SAH and includes two additional weights: one
based on the bounding cone around the directions in which the lights emit light,
and another based on the flux emitted by the resulting clusters. The cost metric is

cost(L, R, 5) =k (5) ® (L)H(L‘j(/\zfi)(;))LT((flag;)Mn (R) ' (16)

where s is the axis on which the split is occurring, k(s) = length,,../length, is used
to prevent thin boxes, and M, is an orientation measure [11].

VH The volume heuristic (VH) is based on the SAH and replaces the surface area
measure a(C) in Equation 15 by the volume v(C) of a node C’'s AABB.

VOH The volume orientation heuristic (VOH) similarly replaces the surface area
measure in the SAOH (Equation 16) by the volume measure.

LIGHT IMPORTANCE SAMPLING

We now look at how the lights are actually sampled based on the acceleration
structure described in the previous section. First, the light BVH is probabilistically
traversed in order to select a single light source, and then a light sample is
generated on the surface of that light (if it is an area light). See Figure 18-1.

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

18.4.3.1 PROBABILISTIC BVH TRAVERSAL

When traversing the acceleration data structure, we want to select the node that
will lead us to the lights that contribute the most to the current shading point, with
a probability for each light that is proportional to its contribution. As mentioned in
Section 18.4.2, the contribution depends on many parameters. We will use either
approximations or the exact value for each parameter, and we will try different
combinations to optimize quality versus performance.

Distance This parameter is computed as the distance between the shading point and
the center of the AABB of the node being considered. This favors nodes that are close
to the shading point (and by extension lights that are close), if the node has a small
AABB. However, in the first levels of the BVH, the nodes have large AABBs that contain
most of the scene, giving a poor approximation of the actual distance between the
shading point and some of the lights contained within that node.

Light Flux The flux of a node is computed as the sum of the flux emitted by

all light sources contained within that node. This is actually precomputed when
building the BVH for performance reasons; if some light sources have changing
flux values over time, the precomputation will not be an issue because the BVH will
have to be rebuilt anyway since the flux is also used for guiding the building step.

Light Orientation The selection so far does not take into consideration the
orientation of the light source, which could give as much weight to a light source
that is shining directly upon the shading point as to another light source that is
backfacing. To that end, Conty Estevez and Kulla [11] introduced an additional term
to a node’s importance function that conservatively estimates the angle between
the light normal and direction from the node’s AABB center to the shading point.

Light Visibility To avoid considering lights that are located below the horizon of
a shading point, we use the clamped n - Lterm in the importance function of each
node. Note that Conty Estevez and Kulla [11] use this clamped term, multiplied by
the surface’s albedo, as an approximation to the diffuse BRDF, which will achieve
the same effect of discarding lights that are beneath the horizon of the shading
point.

Node Importance Using the different parameters just defined, the importance
function given a shading point X and a child node C is defined as

importance()(, C)z

(D(C)Icosé’,7|x{c059’ ifo'<@, (17)

")(_ 0"2 0 otherwise,

269

RAY TRACING GEMS
where [|[X — C|| is the distance between shading point X and the center of the

AABB of C, :9,.’:max(0, Q-—Hu), and 0" = max (0,0 — 6, — 0,). The angles 6, and
6, come from the light orientation cone of node C. The angle 6 is measured
between the light orientation cone’s axis and the vector from the center
of C to X. Finally, 6; is the incident angle and 6, the uncertainty angle; these

can all be found in Figure 18-3.

Light
Orientation

\
\
Y

e

Node W</
0 ’ ~

Bounding /

Cone /

Figure 18-3. Description of the geometry used for computing the importance of a child node
C as seen from a shading point X. In Figure 18-1, the importance is computed twice at each

step in the traversal, once for each child. The angle 6, and the axis from X to the center of the
AABB represent the smallest bounding cone containing the whole node and are used to compute

conservative lower bounds on 0; and 6.

18.4.3.2 RANDOM NUMBER USAGE
A single uniform random number is used to decide whether to take the left or

the right branch. The number is then rescaled and used for the next level. This
technique preserves stratification (cf., hierarchical sample warping [9]) while
also avoiding the cost of generating new random numbers at every level of the
hierarchy. The rescaling of a random number £ to find a new random number &’is

done as follows: ¢
—— if L),
ge Pl <t (18)
iﬂ) otherwise,
p(R)

270

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

where p(C) is the probability of selecting node C, computed as the importance of
that node divided by the total importance:

p(L)

importance(L)

) importance(L)+importance(R) (19)
Care must be taken to ensure enough random bits are available due to the limits

of floating-point precision. For scenarios with huge numbers of lights, two or more
random numbers may be alternated or higher precision used.

18.4.3.3 SAMPLING THE LEAF NODE

At the end of the traversal, a leaf node containing a certain number of light sources
has been selected. To decide which triangle to sample, we can either uniformly pick
one of the triangles stored in the leaf node or use an importance method similar to the
one used for computing the node’s importance during the traversal. For importance
sampling, we consider the closest distance to the triangle and the largest n - L bound of
the triangle; including the triangle’s flux and its orientation to the shading point could
further improve the results. Currently, up to 10 triangles are stored per leaf node.

18.4.3.4SAMPLING THE LIGHT SOURCE

18.5

After a light source has been selected through the tree traversal, a light sample
needs to be generated on that light source. We use the sampling techniques
presented by Shirley et al. [37] for generating the light samples uniformly over the
surfaces of different types of lights.

RESULTS

We demonstrate the algorithm for multiple scenes with various numbers of lights,
where we measure the rate at which the error decreases, the time taken for
building the BVH, and the rendering time.

The rendering is accomplished by first rasterizing the scene in a G-buffer using
DirectX 12, followed by light sampling in a full-screen ray tracing pass using a
single shadow ray per pixel, and finally temporally accumulating the frames if

no movements occurred. All numbers are measured on an NVIDIA GeForce RTX
2080 Ti and an Intel Xeon E5-1650 at 3.60 GHz, with the scenes being rendered at

a resolution of 1920 x 1080 pixels. For all the results shown in this chapter, the
indirect lighting is never evaluated and we instead use the algorithm to improve the
computation of direct lighting.

271

RAY TRACING GEMS

We use the following scenes, as depicted in Figure 18-4, in our testing:

>

272

Sun Temple: This scene features 606,376 triangles, out of which 67,374 are
textured emissive; however, after the texture pre-integration described in
Section 18.4.1, only 1,095 emissive triangles are left. The whole scene is lit by
textured fire pits; the part of the scene shown in Figure 18-4 is only lit by two
fire pits located far on the right, as well as two other small ones located behind
the camera. The scene is entirely diffuse.

Sun Temple Bistro (view 1)
- v e —
\ (2= —————
7";'1 ”‘M '-'""m“‘nﬂ
e

Paragon Battlegrounds: Dawn (PBG-D) Paragon Battlegrounds: Ruins (PBG-R)

Figure 18-4. Views of all the different scenes that were used for testing.

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

> Bistro: The Bistro scene has been modified to make the meshes
of many of the different light sources actually emissive. In total,
there are 20,638 textured emissive triangles, out of 2,829,226
total triangles. Overall, the light sources mainly consist of small
light bulbs, with the addition of a few dozen small spotlights and
a few emissive shop signs. The scene is mostly diffuse, with the
exception of the bistro’s windows and the Vespa.

> Paragon Battlegrounds: This scene is made of three different
parts, of which we only use two: Dawn (PBG-D) and Ruins
(PBG-R). Both consist of a mix of large emissive area lights
located in the ground, as well as small ones such as runes
engraved in rocks or small lights on the turrets; most of the
materials are specular, with the exception of the trees. PBG-D
features 90,535 textured emissive triangles, of which 53,210
are left after the texture integration; the whole scene is made
of 2,467,759 triangles (emissive ones included). In comparison,
PBG-R features 389,708 textured emissive triangles, of which
199,830 are left after the texture integration; the whole scene is
made of 5,672,788 triangles (emissive ones included).

Note that although all these scenes are currently static, dynamic scenes are
supported in our method by rebuilding the light acceleration structure per frame.
Similar to how DXR allows refitting of the acceleration structure, without changing
its topology, we could choose to update only the nodes in a pre-built tree if lights
have not moved significantly between frames.

We use different abbreviations for some of the methods used in this section.
Methods starting with "BVH_" will traverse the BVH hierarchy in order to select a
triangle. The suffix after “BVH_" refers to which information is being used during
the traversal: “D” for the distance between the viewpoint and a node’s center,

“F" for the flux contained in a node, “B” for the n - L bound, and finally “0" for the
node orientation cone. The method Uniform uses MIS [41] to combine samples
obtained by sampling the BRDF with samples obtained by randomly selecting

an emissive triangle among all emissive triangles present in the scene with a
uniform probability.

When MIS [41] is employed, we use the power heuristic with an exponent of 2. The
sample budget is shared equally between sampling the BRDF and sampling the
light source.

273

RAY TRACING GEMS

18.5.1
18.5.1.1

PERFORMANCE
ACCELERATION STRUCTURE CONSTRUCTION

Building the BVH using the SAH, with 16 bins on only the largest axis, takes about
2.3 ms on Sun Temple, 26 ms on Bistro, and 280 ms on Paragon Battlegrounds.
Note that the current implementation of the BVH builder is CPU-based, is single-
threaded, and does not make use of vector operations.

Binning along all three axes at each step is roughly 2x slower due to having three
times more split candidates, but the resulting tree may not perform better at
runtime. The timings presented here use the default setting of 16 bins per axis.
Decreasing that number makes the build faster, e.g., 4 bins is roughly 2x faster, but
again quality suffers. For the remaining measurements, we have used the highest-
quality settings, as we expect that the tree build will not be an issue once the code
is ported to the GPU and used for game-like scenes with tens of thousands of
lights.

The build time with SAOH is about 3x longer than with SAH. The difference is
mainly due to the extra lighting cone computations. We iterate once over all lights
to compute the cone direction and a second time to compute the angular bounds.
Using an approximate method or computing bounds bottom-up could speed this up.

Using the volume instead of the surface area did not result in any performance
change for building.

18.5.1.2 RENDER TIME PER FRAME

274

We measured the rendering times with trees built using different heuristics and
with all the sampling options turned on. See Table 18-1. Similarly to the build
performance, using the volume-based metrics instead of surface area did not
significantly impact the rendering time (usually within 0.2 ms of the surface area-
based metric). Binning along all three axes or only the largest axis also has no
significant impact on the rendering time (within 0.5 ms of each other).

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

Table 18-1. Rendering times in milliseconds per frame with four shadow rays per pixel, measured
over 1,000 frames and using the SAH and SAOH heuristics with different build parameters. The
BVH_DFBO method was used with MIS, 16 bins were used for the binning, and at most one triangle was

stored per leaf node.

SAH SAOH
Largest Axis All Axes Largest Axis All Axes
Sun Temple 16.9 +0.27 17.5+0.10 17.3 £0.47 16.2+0.30
Bistro (view 1) 30.3+0.18 30.3+0.61 31.8+0.26 30.4+0.20
Bistro (view 2) 38.8+0.43 36.9£0.30 39.6+0.31 38.3%£1.12
Bistro (view 3) 31.2+0.60 32.3+£0.19 33.0+£0.17 32.7+0.20
PBG-D 23.6+0.22 23.6+0.19 23.7+0.59 23.3+0.20
PBG-R 40.5+0.14 39.8+0.15 41.9 £ 0.57 41.0+£0.16

When testing different maximum amounts of triangles per leaf node (1, 2, 4, 8,

and 10), the rendering times were found to be within 5 % of each other with 1 and

10 being the fastest. Results for two of the scenes can be found in Figure 18-5, with
similar behavior observed in the other scenes. The computation of the importance
of each triangle adds a noticeable overhead. Conversely, storing more triangles per
leaf node will result in shallower trees and therefore quicker traversal. It should be
noted that the physical size of the leaf nodes was not changed [i.e., it was always set
to accept up to 10 triangle IDs), only the amount that the BVH builder was allowed to
put in a leaf node. Also for these tests, leaf nodes were created as soon as possible
rather than relying on a leaf node creation cost.

Unlform Umform

50 Impurlance 50 Impartance
% 40 & 40
E E
g 30 g 30
- -
& 20 & 20
© (o]
— _
2 S
< 10 < 10

0 0

8 10 8 10
Maximum trlangle count per leaf node Maximum trlangle count per leaf node

Figure 18-5. Rendering times in milliseconds per frame for various maximum numbers of triangles
per leaf node for Bistro [view 1] (left] and PBG-R [right], with and without importance sampling for
triangle selection within the leaves. In all cases the BVH was built with 16 bins along all three axes
using SAOH, and BVH_DFBO was used for the traversal.

275

RAY TRACING GEMS

18.5.2
18.5.2.1

276

The use of SAOH over SAH results in similar rendering times overall, but the use

of a BVH over the lights as well as which terms are considered for each node’s
importance do have an important impact, with BVH_DFBO being between 2x and 3x
slower than Uniform. This is shown in Figure 18-6. This boils down to the additional
bandwidth required for fetching the nodes from the BVH as well as the additional
instructions for computing the n - L bound and the weight based on the orientation
cone. This extra cost could be reduced by compressing the BVH nodes (using 16-bit
floats instead of 32-bit floats, for example); the current nodes are 64 bytes for the
internal nodes and 96 bytes for the external ones.

. SAH
[SAOH

30

20

Average Time (ms)
Average Time (ms)

0
BRDF UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO BRDF UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO
samp. samp.

Figure 18-6. Comparisons in Bistro (view 1] (left] and PBG-R [right] of rendering times in milliseconds
per frame using the different traversal methods, compared to sampling the BRDF to get the light
sample direction. All methods use 4 samples per pixel, and BVH-based methods use 16 bins along all
three axes.

IMAGE QUALITY
BUILD OPTIONS

Overall, the volume variants perform worse than their surface-area equivalents,
and methods using 16 bins perform better than their counterparts only using

4 bins. As for how many axes should be considered for defining the best split,
considering all three axes leads to lower mean squared error results in most cases
compared to only using the largest axis, but not always. Finally, SAOH variants are
usually better than or at least on par with their SAH equivalents. This can be highly
dependent on how they formed their nodes at the top of the BVH: as those nodes
contain most of the lights in the scene, they represent a poor spatial and directional
approximation of the emissive surfaces that they contain.

This can be seen in Figure 18-7 in the area around the pharmacy shop sign (pointed
at by the red arrow], for example at point A (pointed at by the white arrow). When
using SAH, point A is closer to the green node than the magenta one, resulting in

a higher chance of choosing the green node and therefore missing the green light
emitted by the cross sign even though that green light is important, as can be seen
in Figure 18-4 for Bistro (view 3). Conversely, with SAOH the point A has a high

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

chance of selecting the node containing the green light, improving the convergence
in that region. However, it is possible to find regions where SAH will give better
results than SAOH for similar reasons.

Figure 18-7. Visualization of the second level of the BVH when built using SAH (left] and SAOH [right];
the AABB of the left child is colored in green whereas the one of the right child is in magenta. In both
cases, 16 bins were used and all three axes were considered.

18.5.2.2 TRIANGLE AMOUNT PER LEAF NODE

As more triangles are stored in leaf nodes, the quality will degrade when using

a uniform selection of the triangles because it will do a poorer job than the tree
traversal. Using importance selection reduces the quality degradation compared to
uniform selection, but it still performs worse than using only the tree. The results
for Bistro (view 3) can be seen on the right in Figure 18-8.

20 m SAH 25 EEE Uniform
SAOH 2.0 Importance

15

1.5
10

1.0
5 I 0/ I I
0 I [| | . 0.0

1 2 4 8 10

BRDF UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO
samp.

Average MSE
Average MSE

Maximum triangle count

Figure 18-8. Comparisons in Bistro [view 3] of mean squared error [MSE] results for the different
traversal methods, compared to sampling the BRDF to get the light sample direction [left] and various
maximum amounts of triangles for BYH_DFBO [right). All methods use 4 samples per pixel, and BVH-
based methods use 16 bins along all three axes.

18.5.2.3 SAMPLING METHODS

In Figure 18-9 we can see the resulting images when using and combining different
sampling strategies for the Bistro (view 2) scene.

277

RAY TRACING GEMS

BRDF Sampling

UNIFORM

BVH_D

BVH_DF

BVH_DFB

BVH_DFBO

4 SPP 16 SPP

Figure 18-9. Visual results at 4 samples per pixel (SPP] (left] and 16 SPP [right], using the different
sampling strategies defined in Section 18.4.3. All BVH-based methods use a BVH built with SAOH
evaluated for 16 bins along all axes. The BVH techniques use MIS: half their samples sample the BRDF
and half traverse the light acceleration structure.

278

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

As expected, using light sampling greatly outperforms the BRDF sampling
approach, by being able to find some valid light paths at each pixel. Using the BVH
with the distance as an importance value allows picking up of the contributions
from nearby light sources, as can be seen for the two white light sources placed
on each side of the door of the bistro, the different lights placed on its facade, orits
windows.

When also considering the flux of the light sources during the traversal, we can
observe a shift from a mostly blueish color (from the hanging small blue light
sources closest to the ground) to a more yellowish tone coming from the different
street lights, which might be located farther away but are more powerful.

Using the n - L bounds does not make much of a difference in this scene, except for
the reflections on the Vespa [mostly visible on the 16 SPP images), but the effects
can be way more pronounced in other scenes. Figure 18-10 shows an example from
Sun Temple. There, using the bounds on n - L results in the back of the column on
the right receiving more light and being distinguishable from the shadow it casts on
the nearby wall, as well as the architectural details of the ceiling of the enclave in
which the statue is located becoming visible.

No n -1 bounds With n - 1 bounds

Figure 18-10. Visual results when not using the n - [bounds (left] compared to using it [right]. Both
images use 8 SPP (4 BRDF samples and 4 light samples] and a BVH binned along all three axes with
16 bins using SAH, and both take into account the distance and flux of the light.

Even without SAOH, the orientation cone still has a small impact on the final

image; for example, the facades in Figure 18-9 (at the end of the street and in
the right-hand corner of the image) are less noisy compared to not using the

orientation cones.

The use of an acceleration structure significantly improves the quality of the
rendering, as seen in Figure 18-8, with between 4x and 6x improved average MSE
score over the Uniform method even when only considering the distance to a node
for that node’s importance function. Incorporating the flux, the n - L bound and the
orientation cone give a further 2x improvement.

279

RAY TRACING GEMS

18.6

280

CONCLUSION

We have presented a hierarchical data structure and sampling methods to
accelerate light importance sampling in real-time ray tracing, similar to what

is used in offline rendering [11, 22]. We have explored sampling performance

on the GPU, taking advantage of hardware-accelerated ray tracing. We have

also presented results using different build heuristics. We hope this work will
inspire future work in game engines and research to incorporate better sampling
strategies.

While the focus of this chapter has been on the sampling problem, it should be
noted that any sample-based method usually needs to be paired with some form
of denoising filter to remove the residual noise, and we refer the reader to recent
real-time methods based on advanced bilateral kernels [25, 34, 35] as a suitable
place to start. Deep learning-based methods [3, 7, 42] also show great promise.
For an overview of traditional techniques, refer to the survey by Zwicker et al. [48].

For the sampling, there are a number of worthwhile avenues for improvement. In
the current implementation, we bound n - L to cull lights under the horizon. It would
be helpful to also incorporate BRDF and visibility information to refine the sampling
probabilities during tree traversal. On the practical side, we want to move the BVH
building code to the GPU for performance reasons. That will also be important for
supporting lights on dynamic or skinned geometry.

ACKNOWLEDGEMENTS

Thanks to Nicholas Hull and Kate Anderson for creating the test scenes. The

Sun Temple [13] and Paragon Battlegrounds scenes are based on assets kindly
donated by Epic Games. The Bistro scene is based on assets kindly donated by
Amazon Lumberyard [1]. Thanks to Benty et al. [4] for creating the Falcor rendering
research framework, and to He et al. [16] and Jonathan Small for the Slang shader
compiler that Falcor uses. We would also like to thank Pierre Moreau’s advisor
Michael Doggett at Lund University. Lastly, thanks to Aaron Lefohn and NVIDIA
Research for supporting this work.

REFERENCES

[11 Amazon Lumberyard. Amazon Lumberyard Bistro, Open Research Content Archive (ORCAJ.
http://developer.nvidia.com/orca/amazon-lumberyard-bistro, July 2017.

[21 Andersson, J. Parallel Graphics in Frostbite—Current & Future. Beyond Programmable Shading,
SIGGRAPH Courses, 2009.

http://developer.nvidia.com/orca/amazon-lumberyard-bistro

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

(11

2]

[13]

[14]

[15]

[16]

71

[18]

[191

[20]
[21]

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novak, J., Harvill, A, Sen, P., DeRose, T., and
Rousselle, F. Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings.
ACM Transactions on Graphics 36, 4 (2017), 97:1-97:14.

Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor
Rendering Framework. https://github.com/NVIDIAGameworks/Falcor, July 2017.

Bikker, J. Real-Time Ray Tracing Through the Eyes of a Game Developer. In [EEE Symposium on
Interactive Ray Tracing (2007), pp. 1-10.

Bikker, J. Ray Tracing in Real-Time Games. PhD thesis, Delft University, 2012.

Chaitanya, C. R. A, Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., and
Aila, T. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising
Autoencoder. ACM Transactions on Graphics 36, 4 (2017), 98:1-98:12.

Christensen, P. H., and Jarosz, W. The Path to Path-Traced Movies. Foundations and Trends in
Computer Graphics and Vision 10, 2 (2016), 103-175.

Clarberg, P., Jarosz, W., Akenine-Méller, T., and Jensen, H. W. Wavelet Importance Sampling:
Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005),
1166-1175.

Clark, J. H. Hierarchical Geometric Models for Visibility Surface Algorithms. Communications of
the ACM 19,10 (1976), 547-554.

Conty Estevez, A, and Kulla, C. Importance Sampling of Many Lights with Adaptive Tree Splitting.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1-25:17.

Dachsbacher, C., Krivanek, J., Hasan, M., Arbree, A., Walter, B., and Novak, J. Scalable Realistic
Rendering with Many-Light Methods. Computer Graphics Forum 33, 1 (2014), 88-104.

Epic Games. Unreal Engine Sun Temple, Open Research Content Archive (ORCA). http://
developer.nvidia.com/orca/epic-games-sun-temple, October 2017.

Goldsmith, J., and Salmon, J. Automatic Creation of Object Hierarchies for Ray Tracing. [EEE
Computer Graphics and Applications 7, 5 (1987), 14-20.

Harada, T. A 2.5D Culling for Forward+. In SIGGRAPH Asia 2012 Technical Briefs (2012),
pp. 18:1-18:4.

He, Y., Fatahalian, K., and Foley, T. Slang: Language Mechanisms for Extensible Real-Time
Shading Systems. ACM Transactions on Graphics 37, 4 (2018), 141:1-141:13.

Heitz, E., Dupuy, J., Hill, S., and Neubelt, D. Real-Time Polygonal-Light Shading with Linearly
Transformed Cosines. ACM Transactions on Graphics 35, 4 (2016), 41:1-41:8.

Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH] (1986), 143-150.

Karis, B. Real Shading in Unreal Engine 4. Physically Based Shading in Theory and Practice,
SIGGRAPH Courses, August 2013.

Keller, A. Instant Radiosity. In Proceedings of SIGGRAPH (1997), pp. 49-56.

Keller, A., Fascione, L., Fajardo, M., Georgiev, ., Christensen, P., Hanika, J., Eisenacher, C., and
Nichols, G. The Path Tracing Revolution in the Movie Industry. In ACM SIGGRAPH Courses (2015),
pp. 24:1-24:7.

281

https://github.com/NVIDIAGameWorks/Falcor
http://developer.nvidia.com/orca/epic-games-sun-temple
http://developer.nvidia.com/orca/epic-games-sun-temple

RAY TRACING GEMS

282

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

Keller, A., Wachter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndorfer, J., and Kettner,
L. The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

Lagarde, S., and de Rousiers, C. Moving Frostbite to Physically Based Rendering 3.0. Physically
Based Shading in Theory and Practice, SIGGRAPH Courses, 2014.

MacDonald, J. D., and Booth, K. S. Heuristics for Ray Tracing Using Space Subdivision. The Visual
Computer 6, 3 (1990), 153-166.

Mara, M., McGuire, M., Bitterli, B., and Jarosz, W. An Efficient Denoising Algorithm for Global
Illumination. In Proceedings of High-Performance Graphics (2017), pp. 3:1-3:7.

NVIDIA. NVAPI, 2018. https://developer.nvidia.com/nvapi.

O0'Donnell, Y., and Chajdas, M. G. Tiled Light Trees. In Symposium on Interactive 3D Graphics and
Games (2017), pp. 1:1-1:7.

Olsson, 0., and Assarsson, U. Tiled Shading. Journal of Graphics, GPU, and Game Tools 15, 4
(2011), 235-251.

Olsson, 0., Billeter, M., and Assarsson, U. Clustered Deferred and Forward Shading. In
Proceedings of High-Performance Graphics (2012), pp. 87-96.

Persso